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Supplementary Material

1. Implementation Details

This section details the implementation components of our
approach, including the class-agnostic proposal generation
and the semantic reasoning modules.

1.1. Class-agnostic Proposal Module

1.1.1. Pre-trained 3D Instance Segmenter

To generate class-agnostic instance masks using the 3D
pre-trained segmenter, we follow the setup described by
[11]. Specifically, we adopt the Transformer-based Mask3D
architecture [9], which is designed for open-vocabulary 3D
instance segmentation. In our experiments, we employ the
Mask3D model trained on the ScanNet200 dataset [8] for
instance segmentation, keeping the mask proposal module
weights frozen. This model produces binary instance masks
that are not associated with specific class labels, aligning
with the open-vocabulary paradigm. To ensure an adequate
number of mask proposals, we set the number of queries to
150. Additionally, we apply the DBSCAN clustering algo-
rithm [2] to subdivide non-contiguous instance masks into
spatially contiguous clusters.

1.1.2. SAM-Guided 3D Instance Segmenter

To generate class-agnostic instance masks using the
SAM-based segmenter, we employ Semantic-SAM [5] as
the 2D foundation model following the method proposed by
[12]. To extract superpoints from the original point cloud,
we adopt the method described in [3]. During the progres-
sive region-growing process, we set the affinity threshold
values to [0.9, 0.8, 0.7, 0.6, 0.5] for the ScanNet200 dataset
to ensure optimal segmentation performance.

1.2. Semantic Reasoning Module

1.2.1. Best Viewpoint Selection

After generating class-agnostic 3D instances, we deter-
mine the optimal projection viewpoint by evaluating the
visibility of each instance from multiple camera poses.
Leveraging the intrinsic matrix and pose transformation, we

project the 3D instance mask onto 2D image coordinates.
Visibility is then quantified by counting the number of vis-
ible pixels, where pixels are considered invisible if their
depth values deviate beyond a small threshold §, designed
to mitigate sensor noise. For the experiments on both Scan-
Net200 [8] and Replica [10] datasets, we set  to 0.2.

To maximize instance clarity and robustness, we select
the viewpoint that results in the highest number of visible
pixels. While we explored using multiple views and ag-
gregating predictions, the performance gain was marginal
(less than 1% AP), and the computational cost increased
significantly. Therefore, we adopt a single-view strategy as
a practical trade-off between accuracy and efficiency.

1.2.2. MLLM Chain-of-Thought Reasoning

We utilize multimodal large language models (MLLMs)
for semantic reasoning, specifically Gemini 1.5 Flash, Gem-
ini 1.5 Flash-8B, and LLaVA-OneVision-7B. The first two
models are accessed via API calls through Gemini’s online
service, while the latter is deployed locally to support infer-
ence. To ensure the validity of the generated labels during
evaluation, we employ the ViT-B/32 CLIP [7] text encoder
to match the MLLM-generated output to the closest prede-
fined category.

To enhance the model’s reasoning capabilities, we de-
sign a Chain-of-Thought (CoT) prompt as described in the
main manuscript. However, during dataset evaluations, the
predefined label set may limit the open-ended nature of
the model’s responses. To address this, we tailor the CoT
prompts specifically for each dataset, guiding the model to
generate outputs that align with the predefined categories
while still leveraging contextual reasoning.

Despite tailored prompting, large models are prone
to hallucination, potentially generating labels that deviate
from the predefined set. To mitigate this, we employ CLIP
to verify the semantic validity of the predicted labels. Given
CLIP’s input length limitation, we also restrict the large
model’s output descriptions to a maximum of 50 words to
ensure clarity and relevance.



The designed prompts for various context-aware repre-
sentations are presented in Tab. 1. For our ablation study,
we also develop prompts without CoT, which are shown in
Tab. 2.

1.3. Datasets

To balance efficiency and performance, we sample data
at fixed intervals across datasets. Specifically, for the Scan-
Net200 [8] and Replica [10] datasets, we extract one frame
out of every 20 frames, including RGB images, depth
frames, and pose information. This sampling strategy re-
sults in a 5% data selection rate.

Following previous works [6, 11, 12], we exclude in-
stances labeled as “wall” and “floor” from the ScanNet200
dataset to focus on object-centric analysis. This exclusion
ensures that our evaluation emphasizes the recognition and
segmentation of distinct object instances.

2. Experiments

In this section, we evaluate the performance of our proposed
approach through extensive experiments on both synthetic
benchmarks and real-world robotic platforms.

2.1. Text-driven 3D Instance Segmentation

To clarify the process of text-driven 3D instance segmenta-
tion as shown in Fig. 4 in the main manuscript, we provide
additional explanation regarding how textual queries inter-
act with our framework.

Our method first performs class-agnostic 3D instance
segmentation, generating a set of instance masks. For each
detected instance, a detailed caption is produced through
CoT reasoning. This caption not only describes the in-
stance itself but also includes information about its sur-
rounding context. These instance-level captions effectively
serve as natural language descriptions that uniquely charac-
terize each object in the scene.

To support text-driven segmentation, user-provided
query texts are matched against the generated instance cap-
tions using a text similarity measure (e.g., CLIP-based or
other embedding comparisons). The instance whose cap-
tion best aligns with the query is identified as the target, and
its corresponding 3D mask is returned as the segmentation
result.

This approach allows the model to ground free-form tex-
tual descriptions to specific 3D instances, without requiring
fixed category labels or predefined object classes. It enables
flexible and intuitive interaction with the 3D scene through
natural language.

2.2. Real-world Implementation

We constructed a dedicated embodied environment to
evaluate our segmentation and navigation algorithms. For
testing and validation, we employed the LoCoBot robot as

Figure 1. Real-world experiment platform.

our experimental platform. The LoCoBot is equipped with
an RGB-D camera (Intel RealSense D435) for depth per-
ception, an IMU for motion tracking, and wheel encoders
for odometry. The robot is powered by an onboard com-
puter and supports wireless communication for remote op-
eration. Our experimental platform and environment are il-
lustrated in Fig. 1.

To enable 3D environmental reconstruction, we de-
ployed the RTAB-Map SLAM algorithm [4] on the ROS
platform, utilizing the RGB-D camera to generate a dense
point cloud representation of the environment. Follow-
ing this reconstruction, we applied our proposed OV3D-
CG method for instance segmentation. OV3D-CG assigns
open-vocabulary semantic labels and descriptions to each
object, enhancing the semantic understanding of the scene.

This enriched semantic information serves as valuable
input for downstream navigation tasks, enabling more
context-aware and adaptive robotic behavior.

2.3. Additional Experiments
2.3.1. Runtime Analysis

To provide a comprehensive evaluation of our method’s
computational efficiency, we conducted a detailed runtime
analysis on the ScanNet200 dataset. The runtime was mea-
sured as the average processing time in seconds per scene
(s/scene) across the entire validation set, comparing our
approach with representative CLIP-based baselines.

Our analysis reveals that the primary computational
bottleneck for current 3D open-vocabulary segmentation
methods—including ours—is the 3D-to-2D modality align-
ment step (I3pto2p). This step’s significant time consump-
tion is the main reason that existing methods struggle to
achieve real-time performance.

Although our inference time is higher, it constitutes only
a fraction of the total runtime (Tta1), Which, as detailed in



Representation Caption Prompt Identification Prompt
bounding box “Describe the object inside the red bounding box. Con-
sider the surrounding background context as well. Limit ' o
the description to 50 words.” “According to the des.crlptl.on
landmarks “There are two images given. The first one is the original [PRO.M PT R.ESPONSE]’ 1d§nt1fy
. . S . what is the object from the available
image. The second one is the original image with some . . .
. . labels. Here is the list of possible
green landmarks. Describe the object that the green land- labels: [LABELS].”
marks mainly covers. Limit the description to 50 words.” ’ ’
SAM mask “There are two images given. The first one is the original
image. The second one is the original image with a green
mask. Describe the object that the green mask mainly
covers. Limit the description to 50 words.”
Table 1. CoT prompts for different context-aware representations on validation set.
Representation Identification Prompt

bounding box

“Identify what is the object inside the red bounding box from the available labels. Here is the
list of possible labels: [LABELS].”

landmarks “There are two images given. The first one is the original image. The second one is the
original image with some green landmarks. Identify the object that the green landmarks
mainly cover from the available labels [LABELS].”

SAM mask “There are two images given. The first one is the original image. The second one is the

the available labels [LABELS].”

original image with a green mask. Identify the object that the green mask mainly covers from

Table 2. Prompts without CoT for different context-aware representations on validation set.

Tab. 3, remains dominated by the T3p:,op process. There-
fore, the runtime overhead from our method is modest when
considering the entire pipeline. We consider this perfor-
mance trade-off acceptable given the substantial gains in
flexibility, interpretability, and rich reasoning capabilities
that our method provides.

Additionally, we specifically evaluated the runtime of
using multiple SAM iterations for mask generation. This
process is highly efficient, requiring only ~ 0.4 seconds to
segment 10 images on average, confirming that its impact
on the total runtime is negligible.

Method T3Dmask T3pto2p Tinter  Ttota AP
OpenMask3D 59 336 10 405 154
Open3DIS 87 415 12 514  23.7
Ours 95 375 120 500 254

Table 3. Detailed runtime analysis of OV-3DIS methods on the
ScanNet200 dataset.

2.3.2. Challenging Task Evaluation

We evaluated our approach on a particularly challenging
task: functionality segmentation, using the SceneFun3D [1]

dataset with ground truth masks to better evaluate seman-
tic reasoning. The results demonstrate that our context-
aware MLLM method significantly outperforms the CLIP-
based baseline, particularly on small, functionally complex
objects, as shown in Tab. 4. These findings highlight the
strength of contextual reasoning and show that our approach
excels not only in general tasks but also in complex, func-
tionally demanding scenarios.

Method | AP | Rot. KP. TP. HP. PP. HT FP. PL Unp.

CLIP-based | 11.7 | 09 69 00 143 353 201 00 278 0.0
Ours 222 | 97 370 100 223 293 09 509 349 52

Table 4. Functionality segmentation results on the SceneFun3D
dataset.

2.3.3. Qualitative Results

Our method demonstrates strong OV-3DIS capabilities
on the ScanNet200 [8] and Replica [10] datasets. These
datasets are characterized by a diverse range of scenes, en-
compassing both common and rare objects. Notably, our
method excels in querying instance-level objects based on
various attributes, such as color, shape, material, position,
affordance, and state.



Compared to other CLIP-based methods, our approach
is particularly effective in handling long-text descriptions,
significantly enhancing the flexibility and expressiveness of
our open-vocabulary capabilities. This advantage proves
especially valuable when identifying uncommon or am-
biguous objects, where our method leverages environmen-
tal context to improve semantic reasoning and ensure ac-
curate categorization. Notably, several open-vocabulary
cases demonstrating this capability are presented in Fig. 2-
9, highlighting our method’s ability to interpret complex de-
scriptions and identify challenging object instances.

Beyond instance classification, our method provides
detailed descriptions of the identified objects, enabling
a richer and more comprehensive understanding of the
scene’s contents.

Furthermore, we demonstrate the practical utility of our
method in real-world object-driven navigation scenarios, as
illustrated in Fig. 10, where complex object queries are ac-
curately interpreted and used to guide goal-oriented naviga-
tion behaviors.
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Prompt: “A blue pillow on the bed”

Figure 2. OV-3DIS result based on color and position prompt.

Prompt: "A heptagonal table”

Figure 3. OV-3DIS result based on shape prompt.



Prompt: A device that can freeze food”

Figure 4. OV-3DIS result based on affordance prompt.

Prompt: “/tems that can be used for drinking water”

Figure 5. OV-3DIS result based on affordance prompt.



Prompt: “The trashcan with a plastic bag on it”

Figure 6. OV-3DIS result based on state prompt.

Prompt: “7he bag on the floor”

Figure 7. OV-3DIS result based on position prompt.



Prompt: “Find the picture in the bathroom.”

Figure 8. OV-3DIS result based on position prompt.

Prompt: “Find the chair closer to the bed.”

Figure 9. OV-3DIS result based on position prompt.



Instruction: “Navigate to where the books are”

i

Figure 10. OV-3DIS result based on real-world instruction
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