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1. Results of more models in Table 1 & 4.
We selected five representative models to highlight the mis-
interpretation in the manuscript. And we conducted ex-
periments with more models to demonstrate that this is a
widespread issue, as shown below. The misinterpretation is
largely mitigated after training on the USC12K dataset.

Table 1. Misinterpretation is prevalent when SOD/COD models
applied across tasks. Left: Inference results of SOD models on
COD datasets. Right: Inference results of COD models on SOD
datasets. The metric is Fω

β . EV refers to the Expected Value. After
training with USC12K, misinterpretation is largely eliminated.

SOD COD Datasets
EV

Models COD10K NC4K

B
ef

or
e GateNet 0.4369 0.6036 0

MDSAM 0.6205 0.7303 0
Spider 0.7590 0.8344 0

A
ft

er

GateNet 0.0059 0.0493 0
MDSAM 0.0099 0.1200 0
Spider 0.0089 0.0594 0

COD SOD Datasets
EV

Models DUTS HKU-IS

B
ef

or
e ZoomNet 0.7008 0.6790 0

CamoFormer 0.7921 0.7836 0
Spider 0.8621 0.9089 0

A
ft

er

ZoomNet 0.0777 0.0599 0
CamoFormer 0.1192 0.0764 0
Spider 0.0647 0.0486 0

*Both authors contributed equally to this research.
†Corresponding author: He Tang (hetang@hust.edu.cn).

2. CSCS Metric

Contrary to the Intersection over Union (IoU) that measures
accuracy for a single class, the Camouflage-Saliency Con-
fusion Score (CSCS) assesses the misclassification between
two distinct classes. The CSCS, designed to evaluate the
confusion between camouflaged and salient objects, is cal-
culated as follows:

CSCS =
1

2
(

PCS

PBS + PSS + PCS
+

PSC

PBC + PSC + PCC
), (1)

where P = {Pλθ |λ ∈ Θ, θ ∈ Θ} , Θ = {B,C, S}, the
B, C and S denote background, camouflage and saliency. A
lower CSCS value indicates a stronger ability of the network
to discriminate between salient and camouflaged objects.
PCS represents the label as camouflage but is predicted as
saliency. We aim to minimize the misclassification of cam-
ouflaged pixels as salient, ensuring the network correctly
distinguishes between camouflaged and salient objects. The
same applies to PSC . As shown in Figure 2, we present the
confusion matrix of the proposed USCNet on the USC12K
test set. Our model balances improvements across all met-
rics, achieving a mIoU of 0.775 and a CSCS of 0.0749.
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Figure 1. The illustration of PBS , PSS , PCS , PBC , PSC , and
PCC in the CSCS metric. The red mask represents the salient
regions, and the green mask denotes the camouflaged regions.
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Figure 2. Confusion matrix of our USCNet on the USC12K test
set. The units of the values in the confusion matrix are in tens of
thousands (1E+04).

3. Performance in Detecting Objects of Differ-
ent Sizes

To evaluate the model’s ability to detect objects of vary-
ing sizes, we employ several metrics: AUC ↑, SI-AUC ↑,
F β
m ↑, SI-F β

m ↑, F β
max ↑, SI-F β

max ↑, Em ↑. From Ta-
ble 2 and Table 3, it can be observed that, compared to the
size-sensitive(e.g., AUC ↑ and F β

m ↑) and size-invariance
metrics(e.g., SI-AUC ↑ and SI-F β

m ↑), our method exhibits
smaller performance fluctuations, demonstrating its robust-
ness to variations in object size and number in the scene.

4. Results on Popular COD and SOD Datasets

To further validate the effectiveness and robustness of
our method regarding generalizability, we conduct tests
on popular SOD datasets (DUTS [32], HKU-IS [17],
and DUT-OMRON [39]) and COD datasets (CAMO [16],
COD10K [7], and NC4K [24]), with all methods uniformly
trained using our USC12K dataset. We adopt five met-
rics that are widely used in COD and SOD tasks [8, 34].
These metrics include maximal F-measure (Fmax

β ↑) [1],
weighted F-measure (Fω

β ↑) [25], Mean Absolute Er-
ror (MAE, M ↓) [28], Structural measure (S-measure,
Sα ↑) [5], and mean Enhanced alignment measure (E-
measure, Em

ϕ ↑) [6]. As shown in Table 4 and Table 5,
our USCNet achieves state-of-the-art performance on these
datasets through parameter-efficient fine-tuning. This fur-
ther confirms the strong capability of our method to accu-
rately identify both salient and camouflaged objects in un-
constrained environments. This achievement is attributed
to the exceptional versatility of SAM in class-agnostic seg-
mentation tasks and the discriminative ability of our spe-
cially designed ARM for distinguishing between salient and
camouflaged objects.

5. More Technical Details
All models are retrained using the training set of USC12K
with an input image resolution of 352×352. Horizontal
flipping and random cropping are applied for data aug-
mentation. The experiments are conducted in PyTorch on
one NVIDIA L40 GPU. For our model, we use the hiera-
large version of SAM2 following the SAM2-Adapter [3].
AdamW optimizer is used with a warm-up strategy and lin-
ear decay strategy. The initial learning rate is set to 0.0001.
The batch size is set to 24, and the maximum number of
epochs is set to 90.
Backbone of models. The models compared can be di-
vided into two categories based on their papers: one is
full-tuning models, and the other is parameter-efficient fine-
tuning (PEFT) models. (i)Full Tuning models: Include
all SOD and COD methods and VSCode in the Unified
Method. For fairness, the models compared are all trained
according to the configurations specified in their original
papers. (ii)PEFT models: SAM-Adapter, SAM2-Adapter,
EVP in the Unified Method and our model. The back-
bone architectures across various models consist of several
types. For full tuning, VST employs a transformer encoder
based on T2T-ViT [41], while SINet-V2 utilizes Res2Net-
50 [9]. VSCode uses Swin-T [21], and ICEG adopts Swin-
B [21]. PRNet is based on the SMT backbone [18], and
both CamoDiffusion, CamoFormer, and PGT use PVTv2-
b4 [35]. Other models generally rely on ResNet-50 [12]
with pre-trained weights from ImageNet [4]. In the case
of PEFT models, EVP uses SegFormer-B4 [38] as its base,
SAM-Adapter uses the default ViT-H version of SAM [15],
and both SAM2-Adapter and our model employ the hiera-
large version of SAM2 [30].
Training and Inference. For traditional SOD and COD
models: USC12K is defined by three aspects: saliency,
camouflage, and background. Conventional methods for
COD and SOD are crafted for dichotomous mapping tasks
and don’t seamlessly transition to the nuanced demands of
the USC12K benchmark. Inspired by seminal works in se-
mantic segmentations [22, 31], we retool the output layers
of our models to yield a tripartite representation for saliency,
camouflage, and background. This is achieved by harness-
ing a softmax layer to generate a predictive mapping. We
employ a cross-entropy loss function to refine the model,
which is congruent with our overarching methodological
framework. For unified models: VSCode and EVP, which
require task-specific prompts for each dataset, we create two
copies of the USC12K training set. One copy is used for
SOD, with the ground truth being the SOD-only mask, and
is used to train the prompts corresponding to the SOD task.
The other copy is used for COD, with the ground truth being
the COD-only mask, and is used to train the prompts corre-
sponding to the COD task. VSCode is trained once using all
16,800 images (two copies of 8,400 images), while EVP is



Table 2. Performance of different models detecting salient objects on USC12K testing set.

Task Model Update USC12K-SOD
Params(M) AUC ↑ SI-AUC↑ Fβ

m↑ SI-Fβ
m↑ Fβ

max↑ SI-Fβ
max↑ Em↑

SOD

GateNet [43] 128 .810 .812 .696 .754 .706 .764 .775
F3Net [36] 26 .828 .826 .722 .765 .734 .777 .803
MSFNet [42] 28 .832 .831 .726 .772 .735 .782 .805
VST [19] 43 .777 .777 .642 .732 .650 .741 .742
EDN [37] 43 .831 .830 .726 .769 .736 .780 .804
ICON [44] 32 .821 .832 .702 .764 .711 .774 .795

COD

SINetV2 [8] 27 .843 .842 .755 .783 .765 .793 .827
PFNet [26] 47 .820 .822 .712 .756 .724 .767 .799
ZoomNet [27] 33 .821 .823 .710 .765 .720 .774 .791
FEDER [10] 44 .841 .842 .742 .784 .750 .796 .820
ICEG [11] 100 .830 .825 734 .762 .743 .770 .831
PRNet [13] 13 .851 .845 .742 .779 .750 .792 .832
CamoFormer [40] 71 .844 .843 .750 .782 .758 .790 .821
PGT [33] 68 .831 .828 .717 .773 .727 .784 .791
SAM2-Adapter [3] 4.36 .847 .847 .741 .783 .751 .794 .816

Unified
VSCode [23] 60 .843 .842 .749 .776 .768 .789 .822
EVP [20] 4.95 .850 .847 .751 .782 .771 .792 .830
USCNet(Ours) 4.04 .853 .850 .761 .787 .772 .798 .833

Table 3. Performance of different models detecting camouflaged objects on USC12K testing set.

Task Model Update USC12K-COD
Params(M) AUC↑ SI-AUC↑ Fβ

m↑ SI-Fβ
m↑ Fβ

max↑ SI-Fβ
max↑ Em↑

SOD

GateNet [43] 128 .692 .687 .443 .558 .453 .569 .651
F3Net [36] 26 .695 .687 .449 .564 .458 .574 .649
MSFNet [42] 28 .698 .691 .455 .565 .465 .576 .659
VST [19] 43 .626 .625 .303 .536 .312 .546 .524
EDN [37] 43 .709 .703 .476 .575 .485 .585 .670
ICON [44] 32 .663 .663 .384 .549 .394 .560 .587

COD

SINetV2 [8] 27 .715 .705 .505 .588 .514 .598 .690
PFNet [26] 47 .678 .672 .429 .544 .440 .555 .630
ZoomNet [27] 33 .657 .653 .394 .545 .405 .556 .588
FEDER [10] 44 .710 .703 .486 .567 .497 .578 .689
ICEG [11] 100 .730 .717 .525 .601 .532 .609 .719
PRNet [13] 13 .705 .695 .454 .569 .464 .579 .652
CamoFormer [40] 71 .756 .745 .565 .626 .575 .636 .743
PGT [33] 68 .746 .734 .527 .596 .539 .607 .715
SAM2-Adapter [3] 4.36 .770 .761 .575 .637 .585 .647 .746

Unified
VSCode [23] 60 .735 .727 .519 .601 .525 .597 .722
EVP [20] 4.95 .695 .684 .485 .577 .494 .587 .650
USCNet(Ours) 4.04 .801 .794 .610 .658 .619 .667 .795

trained twice on the two separate training sets (each contain-
ing 8,400 images) to obtain the two task-specific prompts.
During inference, all unified models perform inference on
the testing set of USC12K twice, with the corresponding
prompt enabled for each task. The first inference run gener-
ates the SOD results, and the second inference run generates
the COD results. The final prediction is obtained by merg-
ing the SOD and COD predictions. For overlapping pixels,
the aspect with the higher prediction value between the two
tasks is chosen as the final aspect for that pixel.

6. More USC12K Dataset Detail and Examples

Object category distribution. We obtain an initial coarse
classification using CLIP [29], followed by manual verifi-
cation and refinement. Except for images collected from
COD10K [7], which already include camouflage object cat-
egory labels, all other objects require classification. Then
we assign category labels to each image, covering 9 super-
classes and 179 sub-classes. Figure 3 illustrates the class
breakdown of our USC12K dataset.

Object number distribution. Our USC12K dataset con-
tains images with different numbers of objects. For clarify,
we have counted the distribution of images with different



Table 4. Generalization performance of related methods on the DUTS, HKU-IS, and DUT-OMRON test sets. ↑ / ↓ represents the
higher/lower the score, the better.

Task Model
Update DUTS HKU-IS DUT-OMRON

Params(M) Fmax
β ↑ Fω

β ↑ M ↓ Sα ↑ Em
ϕ ↑ Fmax

β ↑ Fω
β ↑ M ↓ Sα ↑ Em

ϕ ↑ Fmax
β ↑ Fω

β ↑ M ↓ Sα ↑ Em
ϕ ↑

SOD

GateNet [43] 128 .666 .644 .062 .755 .765 .804 .785 .049 .841 .857 .634 .603 .079 .747 .751
F3Net [36] 26 .703 .683 .055 .783 .794 .832 .816 .044 .853 .881 .638 .615 .073 .747 .758
MSFNet [42] 28 .651 .638 .063 .749 .758 .824 .806 .045 .853 .877 .641 .611 .076 .751 .764
VST [19] 43 .630 .610 .061 .744 .749 .777 .760 .052 .820 .851 .580 .560 .073 .720 .715
EDN [37] 43 .692 .676 .053 .784 .785 .820 .806 .043 .852 .873 .616 .597 .071 .742 .735
ICON [44] 32 .679 .647 .069 .769 .785 .814 .787 .051 .843 .874 .615 .576 .099 .728 .738

COD

SINetV2 [8] 27 .732 .710 .052 .801 .821 .838 .822 .046 .847 .884 .665 .642 .068 .763 .786
PFNet [26] 47 .691 .668 .060 .775 .790 .818 .801 .048 .843 .876 .643 .614 .075 .747 .764
ZoomNet [27] 33 .729 .709 .053 .801 .813 .785 .774 .051 .830 .842 .623 .601 .075 .742 .735
FEDER [10] 44 .736 .714 .052 .808 .821 .839 .827 .045 .869 .881 .645 .615 .077 .755 .760
PRNet [13] 13 .773 .756 .043 .830 .849 .840 .833 .044 .857 .880 .708 .685 .057 .796 .808
ICEG [11] 100 .719 .700 .050 .789 .820 .832 .815 .045 .848 .896 .664 .645 .061 .762 .785
CamoFormer [40] 71 .733 .715 .049 .813 .819 .838 .817 .046 .857 .884 .687 .661 .066 .783 .793
PGT [33] 68 .686 .670 .053 .786 .779 .819 .802 .044 .855 .871 .642 .619 .068 .758 .754
SAM-Adapter [2] 4.11 .761 .746 .048 .834 .796 .822 .806 .043 .836 .869 .708 .685 .059 .793 .802
SAM2-Adapter [3] 4.36 .776 .762 .041 .831 .848 .831 .828 .042 .849 .881 .706 .692 .056 .790 .810

Unified
VSCode [23] 60 .724 .706 .060 .795 .812 .834 .830 .043 .851 .885 .636 .608 .075 .748 .753
EVP [20] 4.95 .769 .750 .045 .833 .836 .835 .832 .043 .852 .878 .710 .692 .057 .794 .810
USCNet(Ours) 4.04 .784 .780 .040 .835 .852 .844 .840 .042 .860 .886 .710 .697 .056 .796 .814

Table 5. Generalization performance of related methods on CAMO, COD10K, and NC4K test set. ↑ / ↓ represents the higher/lower the
score, the better.

Task Model
Update CAMO NC4K COD10K

Params(M) Fmax
β ↑ Fω

β ↑ M ↓ Sα ↑ Em
ϕ ↑ Fmax

β ↑ Fω
β ↑ M ↓ Sα ↑ Em

ϕ ↑ Fmax
β ↑ Fω

β ↑ M ↓ Sα ↑ Em
ϕ ↑

SOD

GateNet [43] 128 .573 .542 .109 .666 .680 .562 .529 .047 .707 .724 .675 .645 .066 .752 .777
F3Net [36] 26 .538 .506 .117 .643 .657 .576 .539 .047 .712 .744 .661 .633 .070 .738 .773
MSFNet [42] 28 .568 .535 .113 .661 .682 .543 .534 .052 .692 .719 .671 .645 .067 .747 .778
VST [19] 43 .484 .455 .109 .636 .631 .468 .430 .055 .661 .670 .597 .567 .072 .710 .732
EDN [37] 43 .573 .542 .109 .666 .680 .595 .562 .044 .727 .756 .688 .660 .063 .761 .795
ICON [44] 32 .520 .481 .125 .641 .648 .540 .502 .053 .695 .715 .631 .596 .076 .724 .752

COD

SINetV2 [8] 27 .590 .562 .102 .681 .694 .609 .577 .043 .729 .763 .662 .639 .066 .740 .769
PFNet [26] 47 .535 .505 .110 .652 .661 .556 .524 .049 .699 .730 .660 .633 .068 .737 .769
ZoomNet [27] 33 .494 .472 .113 .635 .612 .520 .496 .048 .488 .671 .596 .576 .074 .708 .706
FEDER [10] 44 .567 .538 .106 .669 .687 .636 .598 .042 .749 .793 .688 .664 .063 .758 .790
PRNet [13] 13 .648 .607 .096 .716 .766 .709 .672 .059 .772 .820 .650 .603 .038 .756 .815
ICEG [11] 100 .728 .697 .066 .769 .820 .735 .708 .051 .786 .840 .645 .610 .035 .753 .807
CamoFormer [40] 71 .645 .618 .078 .732 .750 .729 .707 .054 .789 .822 .668 .639 .035 .770 .811
PGT [33] 68 .635 .612 .089 .718 .730 .729 .706 .052 .791 .819 .642 .612 .036 .758 .786
SAM-Adapter [2] 4.11 .661 .638 .080 .744 .753 .688 .667 .037 .788 .808 .727 .710 .051 .794 .809
SAM2-Adapter [3] 4.36 .717 .692 .074 .779 .807 .724 .694 .044 .809 .847 .735 .694 .045 .819 .845

Unified
VSCode [23] 60 .562 .532 .109 .658 .678 .626 .591 .043 .744 .787 .684 .662 .067 .753 .783
EVP [20] 4.95 .636 .637 .085 .701 .718 .693 .694 .040 .742 .775 .615 .614 .069 .724 .749
USCNet(Ours) 4.04 .829 .790 .049 .845 .886 .794 .768 .039 .839 .877 .743 .700 .030 .821 .869

numbers of objects in USC12K, as shown in the Table 6.

Detail of annotation process. For Scene A and B, we re-
tained their original annotations, while Scene D did not re-
quire additional annotation. Therefore, we focus here on
detailing the annotation process for Scene C.

• Initial Determination of Object Aspects: We invited 7
observers to perform the initial identification of salient
and camouflaged objects in the images. A voting process
was used to determine the salient and camouflaged ob-

jects in each image, with objects and their aspects receiv-
ing more than half of the votes being retained. We then
used Photoshop to apply red boxes for salient objects and
green boxes for camouflaged objects, which served as the
reference for the subsequent mask annotation step.

• Mask Annotation: We invited 9 volunteers to perform
detailed mask annotation for the dataset using the ISAT
interactive annotation tool [14], which supports SAM
semi-automatic labeling.
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Figure 3. The data source and distribution of different data types.

• Annotation Quality Control: After annotation, we in-
vited an additional 3 observers to review and refine the
results. Masks with imprecise or incorrect annotations
were manually corrected.

More USC12K examples. In Figure 4, we illustrate a se-
lection of images from the USC12K dataset, each featur-
ing both salient and camouflaged objects. The main differ-
ence between our USC12K dataset and existing SOD and
COD datasets is that it includes a curated subset of 3,000
images, each featuring both salient and camouflaged ob-
jects. We invest significant time and effort in finding and
annotating these images. Our dataset spans an extensive
variety of environments, including, but not limited to, ter-
restrial, aquatic, alpine, sylvan, and urban ecosystems, and
encompasses a broad spectrum of categories, such as lion,
flower and various fruit species. This dataset is designed
to assist the SOD and COD research communities in ad-
vancing the state-of-the-art in discerning more sophisticated
saliency and camouflage patterns.

7. Additional Qualitative Results

We present additional predictive results of our USC-
Net model compared to other COD and SOD models in the
USC12K test set. As illustrated in Figure 5, our model out-
performs its competitors. Specifically, across four differ-
ent scenes, our model demonstrates a high degree of con-
sistency with the ground truth, especially in distinguishing
between salient and camouflaged objects. Our model is
adept at learning distinctive features of saliency and cam-
ouflage. For instance, it can accurately identify patterns
such as camouflaged humans (refer to the fifth column of
Figure 5). Moreover, in scenes devoid of salient or cam-
ouflaged objects, our model remains unaffected by com-
plex backgrounds (refer to the sixth column of Figure 5).

This further underscores the robustness and accuracy of
our USCNet model.

Table 6. Distribution of Images with Different Numbers of Objects
in USC12K.

Number of objects 0 1 2 >2
Number of images 3000 4197 2335 2468

Table 7. Performance of different base models. *In the original
SAM or SAM2, we only fine-tune the mask decoder.

Method Base Para. IoUS IoUC mIoU mAcc CSCS

SAM* SAM 3.92 51.07 33.00 59.56 68.73 18.66
USCNet SAM 4.08 73.93 56.50 75.87 83.86 8.24
SAM2* SAM2 4.22 66.42 44.02 68.78 77.65 11.58
USCNet SAM2 4.04 75.57 61.34 78.03 87.92 7.49

8. Additional Ablation Study
Performance of Different Base Models. We conducted
ablation experiments to evaluate the performance of differ-
ent base models, as presented in Table 7. First, as shown
in the first two and last two rows of the table, our model
demonstrates significant performance improvements on the
USC12K benchmark, regardless of whether SAM [15] (de-
fault vit-huge version) or SAM2 [30] (default hiera-large
version) is used as the base model. For instance, when us-
ing SAM as the base model, our method achieves a 16.31%
gain in mIoU compared to the original SAM, while utiliz-
ing SAM2 results in a 9.25% improvement in mIoU over
the original SAM2. Additionally, transitioning from SAM
to SAM2 (as shown in rows 2 and 4) results in performance
gains across all metrics with fewer fine-tuned parameters.
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Figure 5. Additional visualizations of the proposed USCNet and other state-of-the-art methods on the USC12K test set. Zoom-in for
better view.
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