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Supplementary Material

In this supplementary material, we aim to provide addi-
tional details to support the main content of our paper:
• Comparison of Training Methods: In Section A, we

compare and discuss the training methodologies em-
ployed in ObjectGoal Navigation (OBJECTNAV) and
Vision-and-Language Navigation (VLN) research. This
comparison highlights the motivation behind the chosen
training strategies and the data selection for SAME.

• Illustration of the DUET Method: Section B offers a
comprehensive explanation of the DUET [3] approach
utilized in our study, elucidating its design and integra-
tion within our framework.

• Datasets: In Section C, we provide a detailed introduc-
tion to the additional datasets we used to evaluate SAME.

• Full Results: The complete results of SAME are pro-
vided in Table 1, showcasing the performance of our
method across various metrics and datasets.

A. OBJECTNAV and VLN Training
Besides learning shareable knowledge and task-specific
skills from the model design of SAME, another challenge
under the unified language-guided navigation framework is
to determine the most effective approach to facilitate the
learning of agents’ language comprehension capacity and
grounding it in action prediction. Analyzing the rationality
within the contrasting research focuses on ObjectGoal Nav-
igation and VLN offers insights into this challenge. Specif-
ically, we observe that the primary differences lie in the
training data and training methods used. In this section,
we discuss and make strategic decisions in SAME training
regarding these two aspects, to address the above challenge.

When language instructions are minimal, the task re-
duces to OBJECTNAV [2], where the learning objective is
the semantic affinity between the target object and the vi-
sual perception, and leveraging episodic memory for strate-
gic exploration without redundant revisits, since no ex-
tract information is provided from the language instruc-
tion. From the data aspect, it is proven to be effective
to learn strategical exploration through human demonstra-
tion, and data collection is done in several works [10, 11].
From the training aspect, OBJECTNAV combines learn-
ing “where” and “how” to move, incorporating semantic
perception and low-level collision avoidance (FORWARD,
TURN LEFT, TURN RIGHT, STOP) within a continuous
environment [12].

On the contrary, VLN requires higher-level language
understanding, where the agents not only need to under-

stand the visual semantics of the environment but also
need to align past observation and action sequence with
the language description. From the data aspect, VLN
agents learn higher-level language comprehension capacity
from human-annotated instructions for navigation episodes.
From the training aspect, such alignment is hard to learn
directly in a continuous environment, evident by the low
performance (∼ 35% SR) on VLN-CE benchmark [6]
of the methods that directly operate in continuous envi-
ronments. Therefore, VLN research typically decouples
Vision-Language alignment from collision avoidance by
learning to navigate in a discretized environment [1], where
the navigable viewpoints are densely sampled from the en-
vironment at an average separation of 2.25m to form a
navigation graph. The learned multimodal navigation pol-
icy performs high-level action by selecting view directions
that contain a navigable viewpoint and teleporting between
viewpoints on the graph. A waypoint predictor [4, 5, 7] is
employed to bridge action space discrepancies in continu-
ous settings. Decoupling the learning of Vision-Language-
Action alignment with low-level action control significantly
benefits the learning of language understanding capacity,
improving VLN-CE success rates by ∼ 20%.

To bridge action space discrepancies in continuous set-
tings, modular designs employ waypoint predictors to pro-
pose navigable waypoints based on current observation,
while the multimodality navigation policy performs view
selection conditioned on these waypoints, with a heuristic
controller executing low-level actions to move to the way-
point. Decoupling the learning of vision-language-action
alignment with low-level action control significantly bene-
fits the language understanding capacity, improving VLN-
CE success rates by approximately 20%. In this work, we
hypothesize such modular setups optimize the learning of
language understanding capacity, which guides us to per-
form unified policy training in the discrete environment.

Building on the aforementioned discussion, this work
concentrates on solving the high-level decision-learning
problem by decoupling it from tasks such as collision avoid-
ance and low-level control. This direction motivates the
adoption of VLN training methods for SAME training
within a discrete environment. Regarding training data,
we combine OBJECTNAV human demonstration data with
VLN human-annotated instructions to capture and learn dis-
tinct navigation behaviors.



B. DUET Revisit
SAME builds upon the design of the Dual-scale Graph
Transformer (DUET) [3]. DUET incorporates a text en-
coder to process instructions and employs both global and
local branches to facilitate cross-modal reasoning at coarse
and fine scales.

B.1. Text and Visual Embedding
DUET’s text encoder leverages a 12-layer transformer, ini-
tialized with LXMERT [13]. For visual embedding, each
node’s visual observation comprises 36 view images, cov-
ering 12 horizontal and 3 vertical directions. To differenti-
ate between these views, a directional embedding Eang is
added to the visual features Ôt, which are extracted by the
vision encoder. Since DUET incorporates all 36 view im-
ages to construct the spatial observation, navigable adjacent
nodes are only visible in a subset of these views, referred
to as navigable views. To account for this, a navigable em-
bedding Enav is also included. The final visual embedding
is processed by a 2-layer transformer to encode spatial re-
lationships between views, producing panoramic view em-
beddings:

Opano = SelfAttn
(
Ôt + Eang + Enav

)
. (1)

B.2. DUET Local Branch
This section focuses on the local branch of DUET, which
predicts actions based on the current node’s instruction and
egocentric observation. Unlike the global branch, no graph-
level information is utilized beyond local observations.

B.2.1. Local Visual Embedding
The panoramic view embedding Opano is augmented with
two types of location embeddings. The first represents the
relative location of the current node with respect to the start-
ing node, encoding long-distance directional relationships.
The second represents the egocentric directions of adjacent
views at the current node, enabling actions such as “turn
right.”

B.2.2. Local Cross-Modal Encoding
The local branch employs a standard 4-layer cross-modal
transformer to capture relationships between vision and lan-
guage. During action prediction, a mask is applied to ex-
clude unnavigable views and action logits are computed
only for the navigable views at the current node.

B.3. DUET Global Branch
This section introduces the global branch of DUET, which
tasks the topological map representation Ĝt and encoded
language instruction Ŵ to predict actions by selecting any
nodes on the graph.

B.3.1. Node Embedding
For each node on the graph, two additional encodings are
applied: a location encoding Eloc and a navigation step en-
coding Estep. The location encoding represents the egocen-
tric position of a node on the map, capturing its orientation
and distance relative to the current node. On the other hand,
the navigation step encoding assigns a value corresponding
to the latest visited timestep for previously visited nodes,
while unexplored nodes are encoded with a value of 0. This
encoding scheme enables the model to differentiate nodes
based on their navigation history, thereby enhancing align-
ment with the provided instructions. Additionally, a spe-
cial “stop” node is introduced into the graph to signify the
stop action. This node is connected to all other nodes in the
graph.

B.3.2. Global Cross-Modal Encoding
The encoded node features and word embeddings are pro-
cessed through a 4-layer graph-aware cross-modal trans-
former, which is composed of the following two key com-
ponents, as illustrated in Figure 2.
Cross-Attention Layer This layer models the relationships
between the global map and the instruction, enabling cross-
modal alignment. SAME examine applying State-Adaptive
MoE on the visual query Wq or textual key Wk and value
Wv in this layer.
Graph-Aware Self-Attention Layer (GASA) Unlike stan-
dard self-attention mechanisms which rely solely on visual
similarity, the GASA module incorporates the graph’s struc-
tural information to refine attention computation, formu-
lated as follows:

GASA(V) = Softmax
(
VWq(VWk)

T

√
d

+A(Et)
)
VWv,

(2)
where A(Et) represents the spatial affinity matrix, com-
prised of pairwise L2 distances among all observed nodes.
By incorporating this spatial context, GASA ensures that
the model prioritizes spatially or topologically proximate
nodes, which are often more contextually relevant than vi-
sually similar but distant nodes.

Each block in the global branch concludes with a Feed-
Forward Network (FFN). Additionally, SAME explores ap-
plying the State-Adaptive MoE mechanism to this FFN, as
depicted in Figure 2 of the main paper.

C. Datasets
Besides the R2R, REVERIE, and OBJECTNAV-MP3D, we
include 4 other datasets for larger scale training and evalua-
tion.
• RxR-EN [8]: English split of the RxR dataset, which

contains longer instructions compared to R2R and non-
shortest trajectory from starting point to ending point.



Benchmark Val Unseen Test Unseen

TL NE↓ nDTW↑ SR↑ SPL↑ TL NE↓ GP↑ SR↑ SPL↑

R2R [1] 13.65 2.73 71.05 76.25 66.16 14.80 3.03 – 73.92 64.41
RxR-EN [8] 22.69 6.53 51.20 50.52 42.19 – – – – –
REVERIE [9] 18.87 5.18 48.54 46.35 36.12 19.47 – – 48.60 37.10
SOON [15] 34.42 8.12 – 36.11 25.42 37.99 – – 38.18 27.11
CVDN [14] 30.90 12.72 – 24.48 17.23 – – 7.07 18.15 12.18

Table 1. Full results of SAME on all VLN benchmarks.

• CVDN [14] requires the agent to comprehend the conver-
sation history and infer the correct next actions based on
the dialogue context. For evaluation, we use the standard
metric, Goal Progress (GP), which calculates the average
difference between the completed trajectory length and
the remaining distance to the goal.

• SOON [15]: Similar to REVERIE, the instructions de-
scribe target rooms and objects, with an average length of
47 words. The expert paths vary in length from 2 to 21
steps, with an average of 9.5 steps.

• R2R-CE [6]: Transfering the discrete trajectories in R2R
to continuous 3D scans rendered by Habitat [12], allow-
ing an agent to navigate freely in open space while requir-
ing interaction with obstacles.

D. Full Results on All VLN Tasks

We show the full results of SAME on all the tested VLN
benchmarks in Table 1.
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