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Supplementary Material

S1. Details of Network and Objectives
In this section, we present our network and loss functions in
detail.
Transformer encoder-decoder with prediction heads.
We follow the architectural principles outlined in [3, 4] for
the design of our transformer and prediction heads, with
modifications introduced in the encoder. Specifically, we in-
tegrate our proposed Temporal Dynamic Tokenizer into the
encoder to address spurious correlations effectively.

Given a spurious pair p′i = {Ṽ ′
i , Ṽ

′
ki
}, this module pro-

cesses all video pairs uniformly. As introduced in Sec-
tion 3.2, we use T to denote the temporal dynamics. To
incorporate these dynamics, we employ two transformer
encoder layers with cross attention that facilitate bidirec-
tional interactions: (1) between the temporal dynamics and
the text query, and (2) between the video content and the
text query. Once the temporal dynamics and video content
are individually aligned with the text, we apply a weighted
element-wise addition to combine their outputs. This re-
jected representation is subsequently processed through a
standard transformer layer to refine the contextual under-
standing. Given a spurious pair pi = {Ṽi, Ṽki

}, our ap-
proach generates a refined spurious pair p′i = {Ṽ ′

i , Ṽ
′
ki
} that

incorporates these temporal and semantic enhancements.
Loss Functions. We compute the loss between the pre-
dicted output ŷ and its corresponding ground truth y (mi)
for Ṽ ′′

i , as well as between ŷ′ and its ground truth y′ (m′
i)

for Ṽ ′′
ki

. The predictions are matched with their targets,
and the loss is calculated using L1 loss, generalized IoU
(gIoU) loss, and cross-entropy loss, respectively, as de-
scribed in [3].

S2. Sensitiveness Analysis
S2.1. Video Synthesizer for Dynamic Context
In Section 3.1, we construct a new sample Ṽki

with dynamic
context from spurious pair pi = {Vi, Vki

} as follows,

Ṽki = α · Vi + (1− α) · Vki , (10)

where α represents the sampling ratio of Vi while 1 − α
corresponds to Vki

.
We examine the impact of the sampling ratio α on the

quality of the synthesized samples. In detail, we adapt α
ranging from 0.1 to 0.9 with a step size of 0.2.

As illustrated in Table S1, when the sampling ratio α
increases, the synthesized video incorporates more tokens

from the videos containing the target moments with cor-
responding dynamic contexts, thus improving the perfor-
mance of moment retrieval. The performance starts to de-
cline from α = 0.9, due to the lack of dynamics of the
contexts. Specifically, when α = 1.0, the synthesized video
is identical to the original video. This ablation study on
α demonstrates the effectiveness of our Video Synthesizer
for Dynamic Context in improving model performance by
balancing contextual information and target moment focus.
Besides, even with various sampling ratios α, our method
still achieves promising results, which demonstrate the ro-
bustness of the proposed method.

α
MR-R1 MR-mAP

@0.5 @0.7 @0.5 @0.75 Avg.
0.0 11.61 3.35 23.93 7.5 10.09
0.3 65.10 51.94 65.77 48.13 47.55
0.5 64.77 51.10 66.79 49.08 47.95
0.7 65.88 53.67 66.43 49.86 49.05
0.9 64.19 51.23 66.29 48.88 47.94

Table S1. Sensitiveness analysis of sampling ratio α on QVHigh-
lights val split.

β
MR-R1 MR-mAP

@0.5 @0.7 @0.5 @0.75 Avg.
0.1 65.10 51.94 67.37 50.12 48.87
0.3 64.77 51.48 66.50 49.76 48.48
0.5 65.15 51.26 66.24 48.44 47.81
0.7 65.88 53.67 66.43 49.86 49.05
0.9 62.97 50.19 65.81 48.76 47.83

Table S2. Sensitiveness analysis of sampling ratio β on QVHigh-
lights val split.

S2.2. Dynamics Enhancement
In section 3.2, the model learns from both dynamic and
video information via cross-attention machines. To empha-
size the learned dynamic information, we inject text-guided
dynamic representation T ′ into video Ṽi as follows,

Ṽ ′
i = β · Ṽi + (1− β) · Vi, (11)

where β represents the injection ratio of the video informa-
tion we used, while 1−β corresponds to temporal informa-
tion T ′. We also examine the impact of the injection ratio β
on the quality of the injected videos. In detail, we adapt β



Method QVHighlights val Charades-STA test
R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP R1@0.5 R1@0.7

QD-DETR 68.58 52.13 67.87 45.94 45.40 66.63 42.78
CG-DETR 70.27 55.62 69.17 52.62 50.93 69.11 46.13

BAM-DETR 69.72 55.13 69.38 52.89 51.13 68.49 48.33
TD-DETR (ours) 71.29 57.23 72.99 54.94 53.23 73.49 53.01

Table S3. Comparison of models performance on QVHighlights val split using InternVideo2 feature representations.

A teacher is writing on a white board.

102s GT 116s
28s              QD-DETR              46s

100s Ours 116s

32s           CG-DETR           46s
28s                     BAM-DETR                68s

IoU: 0.00%
IoU: 0.00%

IoU: 0.00% IoU: 87.50%

Figure S1. Model prediction on query “A teacher is writing on a
whiteboard.”. Baselines tend to predict the teacher writing on a
screen instead of the target moment which indicates baseline mod-
els fail to distinguish between “screen” and “whiteboard”.

ranging from 0.3 to 0.9 with a step size of 0.2 and evaluate
β = 0 as an extra experiment. As illustrated in Table S2,
when the injection ratio β decreases, the video is injected
with more temporal information, thus improving the per-
formance of moment retrieval. The performance achieves
the highest performance when β = 0.7, which indicates
the benefits of dynamic enhancement. Specifically, when
β = 1.0, no dynamic information is injected into the video,
thus the performance drops a lot in contrast to those with dy-
namics representation. Note that when β = 0.0, the model
relies solely on temporal dynamic information, which leads
to poor predictions due to the absence of any object-related
cues. This ablation study on β validates the effectiveness of
our Temporal Dynamics Enhancement in boosting moment
retrieval by encouraging our model to align text queries with
temporal-dynamic representations. Besides, even with var-
ious sampling ratios β, our method still achieves promising
results, which demonstrate the robustness of the proposed
method.

Method QVHighlights val Charades-STA
R1@0.7 mAP@0.75 mAP R1@0.5 R1@0.7

baseline 46.66 41.82 41.22 57.31 32.55
w/ random 51.29 47.82 47.56 58.66 37.98

w/ dissimilarity 47.23 46.83 45.98 59.25 38.28
w/ similarity 53.67 49.86 49.05 60.89 40.35

Table S4. Comparisons across different sampling strategies. Mix
indicates a mixed selection between similarity and dissimilarity.

Method Para (M) GFLOPs
BAM-DETR 14.50 60.32

Ours 13.89 69.52

Table S5. Comparisons on computational cost.

S2.3. Computational costs
Tab. S5, shows that our method achieves strong perfor-
mance improvements while using fewer parameters and a
minor increase in GFLOPs. Besides, our method dynami-
cally synthesizes videos only during training, so there is no
additional storage involved.

S3. Ablation Analysis on Video Sampling
Strategy

In Section 1.1, we select a video that is contextually simi-
lar to V to ensure both the challenge and rationality of the
synthesized video. As shown in Table S4, we compare our
similarity-based selection strategy with a random sampling
approach on QVHighlights and Charades-STA. The w/ ran-
dom selection still outperforms the QD-DETR baseline but
falls short of w/ similarity, demonstrating the effectiveness
of our approach in generating meaningful and challenging
synthetic video contexts.

S4. Additional Results of Predicted Results
S4.1. More Prediction Examples.
More visualization results of predictions and baselines com-
parison from our proposed TD-DETR model are presented
in Figure S1 and Figure S2.

A lady with white top is talking through the Dior make up she bought.

34s GT 72s
12s    QD-DETR     36s

38s Ours 72s

12s                  CG-DETR                 44s
2s                                        BAM-DETR                                   70s

IoU: 3.33%
IoU: 16.67%

IoU: 51.43%
IoU: 89.47%

Figure S2. Model prediction on query “A lady with white top is
talking through the Dior make-up she bought.”. Baselines tend
to predict the woman with some food and clothes instead of the
target moment which indicates baseline models fail to distinguish
between “make-up” and “clothes”.

S4.2. New Validation Split on Spurious Correlation
Except for Spurious R@1 and Spurious mAP, we introduce
a new validation split based on the QVHighlight validation
set to further evaluate spurious correlations. Specifically,
similar to Section 1.1, we replace the contextual frames of



Method
Standard R1 ↑ Standard mAP ↑

@0.5 @0.7 mIOU @0.5 @0.75 Avg.
QD-DETR 58.29 39.29 52.76 57.25 34.86 34.78
CG-DETR 62.03 43.77 56.57 59.9 38.3 38.48

BAM-DETR 59.74 41.87 54.95 60.05 39.5 39.24
TD-DETR 65.77 46.94 59.43 64.5 42.13 42.21

Table S6. Performance comparison on our dynamic context vali-
dation split.

a video with clips from another video, creating a more dy-
namic and diverse context. This modification aims to dis-
rupt excessive contextual associations and better assess the
model’s robustness against spurious correlations. The mod-
ified validation split will be released publicly with our code.

All illustrated in Table S6, our proposed TD-DETR still
achieves state-of-the-art performance among all baselines
on such a dynamic context validation.

S5. Generalization across Different Feature
Representations

With the rapid advancement of large multi-modal models
in video understanding, InterVideo2—a video foundation
model introduced by [6]—has demonstrated strong capabil-
ities in moment retrieval. Beyond SlowFast [2], we further
evaluate our model’s generalization across different feature
representations. All illustrate in Table S3, the proposed TD-
DETR also achieve state-of-the-art performance. Our TD-
DETR outperforms the previous state-of-the-art model by
a substantial margin, with improvements of up to 3.81%
in R@1@0.7 and 3.88% in mAP@0.75 on QVHighlights
val split and 7.30% in R@1@0.5 and 9.68% in R1@0.7 on
Charades-STA test split.
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