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Supplementary Material

A. Overview
This appendix is structured as follows:
• In Sec. B, we provide more information on implementation details, including the process of TopoTTA, the implementation

details in Stage 2, resizing the ground-truth label, more TopoMDCs, and training the source model.
• In Sec. C, we present additional experiment results, i.e. additional comparison results, additional ablation study, and addi-

tional visualization results.1

B. More Implementation Details
B.1. The Process of TopoTTA
The overall process of TopoTTA is summarized in Algorithm 1.

Algorithm 1: The Process of TopoTTA

Input : A source pre-trained TSS model F(·; θ), teacher model F(·; θ′) target domain dataset Dt = {xt
i}N

t

i=1,
learning rates α1 and α2, number of iteration iterations

Output: Final prediction ŷout

1 for x ∈ Dt do
2 # Stage 1: Topological structure adaptation
3 Define TopoMDCs by Eq. (3,4,5);
4 E ← Encoder (F (·; θ)); # Extract encoder from F(·; θ)
5 for 3× 3 Conv in E do
6 Replace Conv with TopoMDCs(·; θ; δ);
7 end
8 for j ← 1 to iterations/2 do
9 δ ← δ − α1 · ∇δLEM(F(x; θ; δ));

10 end
11 # Stage 2: Topological continuity refinement
12 for j ← 1 to iterations/2 do
13 ŷ′ ← F(x; θ′; δ);
14 Select Np points as key points;
15 for p = (uc, vc)← 1 to Np do
16 xfg

p centered at point p, with a size of s× s ;
17 xbg,*

p ← argmin
xbg

p

Confidence(ŷ′,bg
p ); # xbg

p denotes the background sliding window around xfg
p

18 Obtain xswap
p using low-frequency swapping by Eq. (7);

19 Obtain pseudo-break patch x′
p by Eq. (8);

20 end
21 θ ← θ − α2 · ∇θLCE(ŷ

′,F(x′; θ; δ));
22 end
23 # Prediction
24 ŷout ← F(x; θ; δ)
25 end

1Code will be released at https://anonymous.4open.science/r/TopoTTA-82A0.



B.2. Other Implementation Details in Stage 2
For the Stage 2, we follow the CoTTA’s settings[60]. Before inputting the image x into the teacher model, it undergoes four
rounds of augmentations, combining random horizontal flips, vertical flips, and scaling by factors of 0.5, 1.0, 1.25, and 1.5.
The average prediction from these augmented images is used as the pseudo-label. In the student model, the hard sample x′

undergoes a single round of the same augmentation combinations. The Baseline⋆ in the ablation study already incorporates
these settings.

B.3. Resizing the Ground-Truth Label
In the manuscript, we discuss resizing the images in datasets from three scenarios to 384 × 384. However, conventional
nearest or linear interpolation methods often cause breakage in the thin annotated regions of the ground-truth labels, nega-
tively affecting both training and topological metric calculations. To address this issue, we propose a novel resizing method.
Specifically, the images are first resized using the area-based interpolation method (available in the OpenCV library). Bina-
rization is then applied with thresholds of 0.5 and 0, as shown in the third and fourth columns of Fig. B.1. Next, the skeleton
map is extracted from the binarized result using a threshold of 0. The skeleton map and the binarized image obtained with a
threshold of 0.5 are combined using a pixel-wise OR operation to produce the final resized ground-truth labels, as shown in
the fifth column of Fig. B.1. This resizing method produces results that closely resemble the original ground-truth labels and
effectively preserves topological consistency.

Nearest Linear Area:0.5 Area:0 Ours GT

Figure B.1. Visualization of the proposed resizing method compared with other commonly used approaches. Area:0.5 represents the image
binarized with a threshold of 0.5, Area:0 uses a threshold of 0, and GT is short for ground-truth labels.

B.4. More Topology-Meta Difference Convolutions
In the manuscript, we present the formulation for calculating C1. Here, we provide the formulations for all other directions
of TopoMDCs,

Ci(rx, ry) = Cc(rx, ry)−
∑

(∆rx,∆ry)∈Ri

w(∆rx,∆ry) · xin(rx, ry)

+
∑

(∆rx,∆ry)∈Ri, (∆bx,∆by)∈Bi

w(∆rx,∆ry) · xin(rx −∆bx, ry −∆by),
(11)

R1 = {(−1,−1), (−1, 0), (0,−1)}, B1 = {(−1,−1)}; R2 = {(0,−1), (−1,−1), (1,−1)}, B2 = {(0,−1)};
R3 = {(1,−1), (0,−1), (1, 0)}, B3 = {(1,−1)}; R4 = {(−1, 0), (−1,−1), (−1, 1)}, B4 = {(−1, 0)};
R5 = {(1, 0), (1, 1), (1,−1)}, B5 = {(1, 0)}; R6 = {(−1, 1), (−1, 0), (0, 1)}, B6 = {(−1, 1)};
R7 = {(0, 1), (1, 1), (−1, 1)}, B7 = {(0, 1)}; R8 = {(1, 1), (0, 1), (1, 0)}, B8 = {(1, 1)}.

(12)
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Figure B.2. Different Topology-Meta Difference Convolutions, which inherit parameters from the source domain model without adding
additional parameters to convolution layers.

B.5. Training the Source Model
The Adam optimizer with a learning rate of 5 × 10−4 is used across all four scenarios, with the batch size set to 4. The
maximum number of epochs is set to 100, 50, 100, and 60 for the four scenarios, respectively. The model with the best per-
formance on the source domain test set is selected for testing. Training is conducted using a combination of Dice and binary
cross entropy (BCE) loss functions. During training, random horizontal and vertical flips are applied as data augmentations.

C. Additional Experimental Results
C.1. Additional Comparison Results
Table C.1 presents the detailed experimental results of TopoTTA using CS2Net as the baseline network across four scenarios.
The conclusions are consistent with those drawn when UNet is used as the baseline network: TopoTTA delivers significant
improvements in both segmentation performance and topological connectivity in most scenarios. Table C.2 shows the per-
formance of a TopoTTA variant applied to DSCNet. In this variant, Stage 1 is omitted, and only Stage 2 is used for parameter
updates. This adjustment is necessary because DSCNet already incorporates deformable convolutional kernels, which limit
the compatibility of TopoMDCs. As shown in Table C.2, even with this simplified version, TopoTTA still outperforms most
comparison methods across the majority of scenarios. These additional experiments further validate the broad applicabil-
ity and effectiveness of TopoTTA, demonstrating its ability to efficiently adapt to different CNN-based models. Table C.3
presents the paired t-test results of clDice. The results indicate that the p-value <0.05 almost across all datasets, inferring
TopoTTA’s improvement is significant.
Table C.1. Cross-domain testing results obtained using CS2Net as baseline network in four different scenarios, i.e., retinal vessel segmen-
tation, road extraction, microscopic neuronal segmentation, and retinal OCT-angiography vessel segmentation. Source Only: Trained on
the source, and tested on the target domain directly. The best and second-best results in each column are highlighted in bold and underline.

Method DRIVE→ CHASE DRIVE→ STARE CHASE→ DRIVE CHASE→ STARE DeepGlobe→MR
Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

Source Only 22.58 19.03 43.00 37.27 33.94 112.35 61.78 62.33 95.35 48.46 46.73 107.95 45.70 55.85 79.65
TENT [58] 64.01 65.22 33.50 60.93 55.65 107.80 67.53 67.14 88.65 60.88 56.91 107.75 42.41 52.49 77.88
CoTTA [60] 67.04 69.08 28.50 61.40 55.42 102.10 67.95 67.44 83.90 62.08 58.00 102.35 48.88 58.55 74.65
SAR [43] 63.72 64.86 33.00 60.77 55.52 109.15 67.17 66.83 88.95 60.81 56.86 107.10 43.69 55.02 77.11
DIGA [61] 63.87 64.49 34.13 59.47 54.34 108.40 67.78 67.34 87.15 61.67 57.45 107.70 43.71 55.02 76.96
DomainAdaptor [72] 58.39 57.34 41.38 54.76 49.29 111.10 65.21 65.30 89.80 57.11 54.00 112.40 43.55 56.09 77.37
MedBN [44] 58.10 58.38 34.63 57.40 51.92 116.40 65.21 63.01 90.95 61.76 56.85 110.35 43.42 53.49 77.53
VPTTA [3] 62.14 62.88 35.26 60.59 54.93 108.00 66.97 66.66 88.95 60.30 56.46 107.50 43.89 55.31 77.41

TopoTTA (Ours) 68.27 72.99 21.88 62.00 57.46 91.60 71.12 69.74 77.50 65.09 59.91 96.20 48.47 63.09 73.55

Method DeepGlobe→ CNDS Neub1→ Neub2 Neub2→ Neub1 ROSE→ OCTA500 OCTA500→ ROSE
Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

Source Only 84.28 91.57 10.95 22.00 / 7.56 61.76 72.72 7.31 46.94 53.88 61.00 72.36 75.60 18.33
TENT [58] 76.55 89.29 7.50 62.26 70.52 7.95 62.64 74.01 7.03 66.76 72.10 64.44 73.58 77.60 16.23
CoTTA [60] 75.43 89.72 6.98 63.88 72.98 8.22 63.66 75.87 5.78 68.82 75.01 52.48 72.07 76.34 16.89
SAR [43] 77.02 89.23 7.77 61.55 69.81 8.33 61.86 73.17 7.22 65.99 72.10 63.76 73.67 77.68 16.00
DIGA [61] 79.72 89.70 7.73 61.31 70.40 8.05 63.57 73.90 7.31 66.99 73.02 65.60 71.09 76.38 16.66
DomainAdaptor [72] 78.81 90.94 7.61 53.99 63.87 10.67 63.12 74.19 6.97 63.12 69.60 72.90 71.45 75.88 16.56
MedBN [44] 81.22 92.16 8.08 56.08 63.72 11.50 63.56 72.80 9.84 63.97 69.11 78.92 75.55 78.28 8.11
VPTTA [3] 77.32 89.52 7.68 60.87 69.56 9.28 62.21 73.47 7.32 65.32 71.54 65.28 73.34 77.41 15.77

TopoTTA (Ours) 87.89 96.05 4.24 66.73 75.81 6.72 64.00 76.60 5.31 67.62 76.65 45.92 75.57 78.72 15.67



Table C.2. Cross-domain testing results obtained using DSCNet as baseline network in four different scenarios, i.e., retinal vessel segmen-
tation, road extraction, microscopic neuronal segmentation, and retinal OCT-angiography vessel segmentation. Source Only: Trained on
the source, and tested on the target domain directly. The best and second-best results in each column are highlighted in bold and underline.

Method DRIVE→ CHASE DRIVE→ STARE CHASE→ DRIVE CHASE→ STARE DeepGlobe→MR
Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

Source Only 23.16 18.98 37.25 42.46 36.89 102.35 58.58 53.95 94.60 44.19 / 106.90 42.71 51.87 81.28
TENT [58] 64.17 65.42 22.38 56.87 50.50 105.90 66.75 62.32 83.80 62.18 55.28 102.85 40.30 47.69 79.94
CoTTA [60] 67.14 69.83 25.13 57.69 51.30 103.50 68.80 65.04 79.85 63.96 57.54 99.70 45.13 54.00 77.68
SAR [43] 64.08 65.30 23.25 56.98 50.67 105.75 66.57 62.12 84.30 62.18 55.32 102.90 42.61 51.79 80.48
DIGA [61] 63.87 66.58 24.38 57.82 51.76 105.75 65.58 60.95 85.15 61.43 54.50 104.35 42.83 54.67 78.63
DomainAdaptor [72] 60.42 43.22 105.90 49.74 43.22 105.90 65.60 61.44 85.25 61.99 54.02 103.50 43.14 53.12 79.24
MedBN [44] 58.36 58.80 29.63 54.57 49.68 96.30 66.15 64.52 81.55 61.50 57.72 102.50 41.71 49.59 83.96
VPTTA [3] 63.22 64.24 21.13 56.44 49.85 104.50 66.50 62.11 83.55 62.29 55.18 103.35 42.41 51.15 79.77

TopoTTA (Stage2 only) 67.32 71.89 19.13 60.24 53.06 94.25 70.35 66.88 79.45 64.63 58.05 95.35 47.17 61.55 77.82

Method DeepGlobe→ CNDS Neub1→ Neub2 Neub2→ Neub1 ROSE→ OCTA500 OCTA500→ ROSE
Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

Source Only 81.80 88.67 14.73 3.94 / 9.44 58.66 58.97 7.88 58.76 65.87 61.44 71.22 74.31 17.66
TENT [58] 80.11 92.78 7.27 54.75 63.51 7.83 58.52 58.05 7.47 67.36 74.11 48.66 72.60 76.67 15.88
CoTTA [60] 80.26 93.32 6.82 56.49 64.58 10.65 62.93 65.72 7.00 68.81 73.99 46.54 71.73 76.65 17.78
SAR [43] 81.15 92.67 7.80 55.04 63.77 8.28 58.55 58.16 7.38 66.86 73.24 50.6 72.75 76.82 16.11
DIGA [61] 83.76 92.69 8.93 55.82 64.33 9.34 58.77 60.72 6.91 67.35 73.74 52.04 69.27 75.19 17.89
DomainAdaptor [72] 78.01 90.82 7.37 37.31 46.80 6.84 58.57 58.53 7.28 65.49 72.36 54.78 72.38 76.36 17.00
MedBN [44] 80.35 92.16 11.75 51.54 59.16 7.84 58.58 58.55 8.19 57.41 63.26 60.06 70.76 73.86 18.00
VPTTA [3] 79.68 92.07 7.40 53.16 61.53 7.44 58.55 58.09 7.47 66.77 73.23 50.70 72.81 76.76 16.00

TopoTTA (Stage2 only) 88.63 96.62 4.77 57.45 66.70 8.27 62.88 71.28 5.72 68.50 75.55 37.32 74.03 77.51 17.33

Table C.3. The paired t-test results of clDice using UNet as baseline network across ten datasets. Source Only: Trained on the source, and
tested on the target domain directly.

Method p value

DRIVE→ CHASE DRIVE→ STARE CHASE→ DRIVE CHASE→ STARE DeepGlobe→MR

Source Only <0.001 <0.001 <0.001 <0.001 <0.001
TENT [58] 0.0011 0.0045 <0.001 <0.001 <0.001
CoTTA [60] 0.0128 <0.001 <0.001 0.0033 0.001
SAR [43] 0.001 0.0085 <0.001 <0.001 <0.001
DIGA [61] <0.001 0.057 <0.001 0.027 <0.001
DomainAdaptor [72] 0.0011 <0.001 <0.001 <0.001 <0.001
MedBN [44] <0.001 <0.001 <0.001 <0.001 <0.001
VPTTA [3] 0.0016 0.0032 <0.001 <0.001 <0.001

Method p value

DeepGlobe→ CNDS Neub1→ Neub2 Neub2→ Neub1 ROSE→ OCTA500 OCTA500→ ROSE

Source Only <0.001 <0.001 <0.001 <0.001 <0.001
TENT [58] <0.001 0.0036 <0.001 <0.001 <0.001
CoTTA [60] <0.001 0.0146 0.0511 <0.001 0.0067
SAR [43] <0.001 0.0053 <0.001 <0.001 <0.001
DIGA [61] <0.001 0.0325 0.037 <0.001 <0.001
DomainAdaptor [72] <0.001 0.0015 <0.001 <0.001 <0.001
MedBN [44] <0.001 0.0073 <0.001 <0.001 0.0013
VPTTA [3] <0.001 0.0128 <0.001 <0.001 <0.001

C.2. Additional Ablation Study

Due to the space limitation of our manuscript, we present comprehensive ablation study in this section.

Impact of Different Iterations. In the manuscript, we set the number of iterations to six. Here, we explore the impact of
different iteration counts. Table C.4 shows the performance of TopoTTA and the competing methods under varying iteration
settings. DIGA, which lacks a backforward process, is excluded from this comparison. TopoTTA consistently achieves the
best performance across all iteration counts. For competing methods that update only BN parameters or external parameters,
performance remains stable and shows strong robustness to iteration changes. Similar to TopoTTA, CoTTA demonstrates
continuous performance improvement as the number of iterations increases. However, excessive iterations result in prolonged
inference times. To balance performance and efficiency, we select six as the optimal number of iterations.

Impact of Different Values of Hyperparameters. To verify the sensitivity of our method to hyperparameters, we test
the network performance under different hyperparameter conditions. As shown in Fig. C.3, we analyze the s (modification
window size in TopoHG), n× n (number of TopoMDCs regions), k (coefficient for selecting the number of key points) and
τ bg(upper limit of the foreground pixel ratio). From Fig. C.3(a), we can observe Dice initially rises and then drops sharply,
while clDice stabilizes after reaching a peak. This is because small modification areas are insufficient to create pseudo-



Table C.4. Average testing results across four scenarios under different iteration counts. The best and second-best results in each column
are highlighted in bold and underline, respectively.

Method Iterations = 2 Iterations = 4 Iterations = 6 Iterations = 8 Iterations = 10

Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓ Dice ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

TENT [58] 63.94 67.44 49.44 63.88 67.38 49.36 63.81 67.29 49.42 63.73 67.19 49.37 63.62 67.07 49.34
CoTTA [60] 64.99 68.92 46.82 65.33 69.11 47.31 65.49 69.34 47.30 66.62 70.45 47.06 67.55 71.46 46.95
SAR [43] 63.97 67.48 49.38 63.96 67.47 49.46 63.97 67.49 49.32 63.95 67.45 49.52 63.93 67.42 49.55
DomainAdaptor [72] 63.41 66.53 49.98 63.42 66.53 49.98 63.41 66.53 49.98 63.41 66.53 49.98 63.41 66.53 49.98
MedBN [44] 56.21 53.53 83.75 56.57 54.42 82.22 56.65 54.90 80.05 56.61 54.88 79.78 56.73 54.97 76.75
VPTTA [3] 63.98 67.48 49.75 63.98 67.48 49.79 63.98 67.48 49.76 63.99 67.49 49.76 63.99 67.49 49.76

TopoTTA (Ours) 67.72 71.51 43.90 68.48 73.22 42.38 69.44 74.00 43.01 69.31 74.33 42.93 69.32 74.62 42.29

breaks, whereas excessively large areas can result in falsely high continuity due to overly aggressive predictions. As shown
in Fig. C.3(b), both Dice and clDice achieve their highest values when 4×4 is used. When n is too small, TopoMDCs struggle
to capture the varied topological features across regions, leading to lower performance. Conversely, when n is too large, the
increased number of learnable δ parameters makes learning more difficult, also reducing performance. From Fig.C.3(c), we
select 0.002 as the optimal value for k to achieve the best overall performance. Similarly, Fig. C.3(d) shows that Dice and
clDice also reach their peak at the same value. Including too many foreground pixels in the background window hinders
the effective creation of pseudo breaks, while overly strict constraints on the foreground pixel ratio result in an insufficient
number of pseudo breaks.

Figure C.3. Performance of TopoTTA with different hyperparameter conditions.

Impact of different synthesis qualities. Our background patch search strategy around neighbors, combined with low-
frequency swap, ensures sample authenticity at most times. To further validate it, we conduct experiments with background
patches of varying similarity, where higher similarity corresponds to better synthesis quality. Specifically, we compute the
similarity between all patches in the image and the selected foreground patch. We then conduct low-frequency swap using the
least similar, moderately similar, and most similar ones, respectively, and evaluate their individual performances. As shown
in Table C.5, the performance of using neighbor patch (Ours) is almost identical to that of using the best quality patches
(need extra time +3.02s per image), indicating the high quality of our synthesized samples. To trade off time and accuracy,
our method remains the preferred choice. Note that even with the worst quality patches, performance still outperforms the
second-best baseline.



Table C.5. Ablation results of the different synthesis qualities. The best and second-best results in each column are highlighted in bold and
underline, respectively.

Synthesis quality DRIVE→ CHASE CHASE→ DRIVE

Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

CoTTA 68.60 71.53 36.38 67.64 64.80 81.20

Worst quality (least similar) 69.02 73.82 26.13 71.75 67.65 84.05
Middle quality (moderately similar) 70.69 75.88 25.87 72.55 68.85 82.00
Best quality (most similar) 70.23 77.65 23.35 73.22 70.46 80.20
Neighbor 70.73 77.05 25.38 72.96 70.26 79.15

Necessity of updating router parameter. To verify that simultaneously adjusting both δ and the model parameters increases
the search-space complexity, we conduct an experiment where all parameters are updated together. As shown in Table C.6,
the results reveal a significant performance drop, indicating that this approach may introduce greater parameter instability.
And in the paper’s setting, router parameters δ adds only 1280 params, a negligible increase compared to the original model’s
params (2.894× 106), and fewer than methods like VPTTA, which add 4332 params.

Table C.6. Ablation results of adjusting either all parameters or only router parameters δ at Stage 1.

Upadate Param DRIVE→ CHASE CHASE→ DRIVE

params size Dice (%) ↑ clDice (%) ↑ β ↓ Dice (%) ↑ clDice (%) ↑ β ↓

All 2.895× 106 70.07 72.58 30.23 69.08 65.77 81.7
δ 1280 70.73 77.05 25.38 72.96 70.26 79.15

Visualization of Different Data Augmentation Methods. We visualize the effects of different data augmentation methods,
as shown in Fig. C.4. Our frequency-based method effectively preserves high-frequency details in the generated pseudo-
breaks. In comparison, the Gaussian blur method shows moderate visual effects, while random Gaussian noise and image
swap methods overly modify the images, creating actual breaks.

Blur��
�� ��

′ Noise Image swap

Figure C.4. Visualizations of pseudo-breaks generated by TopoHG and three data augmentation methods, i.e., Gaussian blur, random
Gaussian noise, and image swap in the spatial domain. xfg

p is original patch and x′
p denotes pseudo-break generated by TopoHG.



C.3. Additional Visualization Results

Source Only TENT CoTTA SAR DomainAdaptor MedBN VPTTA TopoTTA GTImage DIGA

Figure C.5. Visualization of segmentation results for TopoTTA and seven comparison methods in retinal vessel segmentation scenario.
“Source Only” denotes results without any TTA methods applied, and GT is short for ground-truth labels.



Source Only TENT CoTTA SAR DomainAdaptor MedBN VPTTA TopoTTA GTImage DIGA

Figure C.6. Visualization of segmentation results for TopoTTA and seven comparison methods in road extraction scenario. “Source Only”
denotes results without any TTA methods applied, and GT is short for ground-truth labels.



Source Only TENT CoTTA SAR DomainAdaptor MedBN VPTTA TopoTTA GTImage DIGA

Figure C.7. Visualization of segmentation results for TopoTTA and seven comparison methods in microscopic neuronal segmentation
scenario. “Source Only” denotes results without any TTA methods applied, and GT is short for ground-truth labels.



Source Only TENT CoTTA SAR DomainAdaptor MedBN VPTTA TopoTTA GTImage DIGA

Figure C.8. Visualization of segmentation results for TopoTTA and seven comparison methods in retinal OCT-angiography vessel segmen-
tation scenario. “Source Only” denotes results without any TTA methods applied, and GT is short for ground-truth labels.
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