Supplementary Document for “Towards Effective Foundation Model Adaptation
for Extreme Cross-Domain Few-Shot Learning”

This supplementary document includes:

* Providing a more detailed discussion of related works in
Sec. 1.

¢ Including additional implementation details in Sec. 2.

* Revisiting the adaptation of foundation models for extreme
cross-domain few-shot tasks in Sec. 3.

¢ Clarifying the motivation for utilizing the expert model in
Sec. 4.1.

» Explaining why not use the expert model directly to solve
the target task in Sec. 4.2

¢ Clarifying how our approach avoids the potential over-
fitting risk of the expert model in Sec. 4.3

 Verifying whether our approach improves the expert model
in Sec. 4.4.

* Validating smaller expert models in Sec. 4.5.

* Providing more visualizations in Sec. 4.6.

 Evaluating hyper-parameters in Sec. 4.7.

1. More Related Work

Few-shot learning. Few-shot learning [1] (FSL) aims to
generalize the model to target tasks using only a limited
number of samples. Previous works in few-shot learning can
be categorized into two main pipelines: meta-learning [2—8]
and transfer learning [9-14]. Among them, meta-learning
methods focus on extracting shared knowledge between dif-
ferent tasks to assist the model in handling novel tasks. To
achieve this goal, meta-learning methods explicitly organize
the training data into the form of support-query tasks. Dur-
ing this process, the support set is utilized for constructing
inner optimization, while the query set is used to evaluate the
generalization error of the current model and perform outer
optimization. By sequentially solving thousands of train-
ing tasks, the model acquires the ability to capture shared
knowledge across tasks. Transfer learning methods typi-
cally adopt a two-stage paradigm, comprising pre-training
and fine-tuning. During the pre-training phase, the model
is fed with a large amount of base classes data to help it
acquire initial representation capabilities. Subsequently, the
model undergoes task-level fine-tuning to adapt to specific
target tasks. Despite making some progress, these few-shot
learning methods are difficult to apply in cross-domain sce-
narios [15, 16].

Cross-domain Few-shot learning. To address the chal-
lenges posed by domain shift, recent works [16—25] have
developed few-shot learners capable of cross-domain trans-
fer. Zhou et al. [17] posit that the simplicity bias of global
features constitutes a primary constraint on model cross-
domain generalization. To address this, they propose a
global-local semantic alignment framework to aid the model
in learning comprehensive representations. Fu et al. [18]
introduce an adversarial training framework to mitigate the
interference of image styles on model generalization. Simi-
larly, Wang et al.[19] and Hu et al.[21] propose constructing
adversarial training at the task-level and feature-level, re-
spectively, to assist the model in learning robust features.
Zheng et al. [25] introduce a cross-level knowledge distilla-
tion approach to extract features effectively. Zou et al.[26]
examine the loss landscape in representation spaces, iden-
tifying sharp minima as critical obstacles to both knowl-
edge transfer and fine-tuning, and introduce a normalization
layer to smooth these minima over longer distances. Wu
et al.[27] combine domain-specific and adaptive prompts to
support domain-aware knowledge transfer, improving gen-
eralization in unfamiliar domains. Zhao et al.[28] tackle
cross-domain few-shot learning (CD-FSL) by using a dual
adaptive representation alignment method, enhancing fast
model adaptation by aligning prototype features and normal-
ized distributions. Wang et al.[29] propose a meta-memory
framework to address domain shifts, integrating style mem-
ory for richer feature distributions and content memory for
semantic information, effectively bridging domain gaps and
improving cross-domain performance. Perera et al.[30] offer
a lightweight, parameter-efficient adaptation approach along-
side a discriminative, sample-aware loss function to improve
cross-domain generation. Yang et al.[31] approach domain
discrepancies and noisy data through progressive training
combined with adaptive distillation, yielding more robust
performance in the face of challenging domain shifts.

Although these methods have achieved state-of-the-art
performance, they are generally constrained by the use of
shallow backbone networks (e.g., ResNet-10) to learn fea-
ture initialization models from small-scale source domains
like mini-ImageNet. In the age of large models, this labor-
intensive source domain training process becomes redun-



dant. With the availability of open-source foundation mod-
els that offer robust feature initialization, the emphasis of
cross-domain few-shot learning should now shift towards
the efficient adaptation of foundation models to target do-
mains. As a result, this study concentrates on addressing
the challenges of adapting foundation models in extreme
cross-domain scenarios.

Foundation models and adaptation strategies. Thanks
to the remarkable scalability of Transformers [32] and the
advancement of self-supervised learning techniques, several
outstanding foundation models are gradually emerging. A
notable example is DINO [33], which learns transferable
visual feature representations through contrastive learning
on large-scale unlabeled datasets. Additionally, Masked
AutoEncoders (MAE) [34] randomly mask patches within
images and then predict the masked regions from the un-
masked ones, enabling the model to learn semantic features
of the images. The CLIP[35] maps images and text into the
same representation space and is trained by contrasting the
similarity and dissimilarity between different pairs of images
and text, thereby learning feature representations with strong
generalization capabilities.

On the other hand, adapting foundation models to down-
stream tasks is a newly emerging research direction. Some
research [10, 36-38, 38—42, 42, 43] seek to effectively lever-
age foundation models in downstream few-shot tasks, aim
to fully harness the benefits of pre-trained knowledge while
minimizing the data needed for effective fine-tuning. Typ-
ically, LoRA [44] achieves model fine-tuning solely by
adding additional low-rank matrices. Visual Prompt Tuning
(VPT) [45] achieves model adaptation by introducing a small
number of trainable parameters into the input space. Zhou
et al. [36] propose to automate CLIP prompt engineering by
utilizing learnable context vectors, aiming to improve the
efficiency of few-shot transfer learning. Song et al. [40] pro-
pose to use lightweight residual adapters to fine-tune CLIP
features, enabling efficient online few-shot learning without
requiring offline fine-tuning. CLIP-Adapter[41] improves
vision-language models by employing feature adapters and
residual blending during fine-tuning, outperforming tradi-
tional methods. CO3[42] introduces a combination of frozen
foundation models and tunable adapters to integrate pre-
trained knowledge, addressing label noise and enhancing
few-shot learning performance. Lin et al.[37] investigate
the role of cross-modal knowledge to enhance adaptabil-
ity in few-shot tasks. Zhang et al.[39] introduce a cascade
approach that combines CLIP [35] and DINO[33] models
to capture a wider range of knowledge, enhancing both
image feature extraction and task-specific learning. Silva
et al.[38] propose to merge class-adaptive linear probing
with enhanced Lagrangian optimization, facilitating efficient
knowledge transfer from large pre-trained models.

Although these methods have been successful, they are
predominantly tailored for within-domain few-shot tasks.
When applied to cross-domain few-shot learning, they face
considerable difficulties due to large domain shifts [15, 16].
In contrast, this study centers on adapting foundation mod-
els to extreme cross-domain scenarios, proposing a novel
adaptation framework designed to improve the generaliza-
tion ability of pre-trained vision foundation models. This
framework enhances the model’s performance by incorpo-
rating task-relevant knowledge from an expert model during
fine-tuning, enabling the foundation model to better manage
significant domain shifts in few-shot learning tasks.

2. More Implementation Details

For extreme setting, our experimental dataset includes
ISIC [46], Chest [47], EuroSAT [48], and CropDisease [49].
The ISIC dataset consists of medical dermoscopic images,
encompassing seven different types of skin diseases. The
Chest dataset comprises X-ray images, totaling seven dif-
ferent categories. The EuroSAT dataset consists of remote
sensing images collected by the European Space Agency,
encompassing ten types of remote sensing scenes. The
CropDisease dataset consists of agricultural plant images,
encompassing thirty-eight categories, commonly used for
plant disease recognition. In this study, we organize these
datasets into more challenging All-way K -shot tasks. The
number of training and testing examples is presented in Ta-
ble 1. In terms of optimization, the batch size is set to 32, the
learning rate to 0.0001, and training is carried out for 500
epochs. In each target domain, a subset not overlapping with
the test samples is designated for model selection. For the
hyper-parameters A; and \q, we perform a grid search from
the candidate set 0.000001, 0.05, 1.0, 10.0, 50.0,100.0. The
masking ratio is fixed at 0.5. To ensure a fair comparison,
we apply the same experimental settings across all baselines
and comparison methods.

Table 1. Data partitioning under extreme CD-FSL settings.

| ISIC | Chest | EuroSAT | CropDisease

Classes 7 7 10 38
Training samples for each class | 1or5 lor5 lor5s lor5s
Total test samples 6132 | 25157 16200 32612

For traditional CD-FSL setting, we follow the bench-
marks proposed by Guo et al. [15] and Tseng et al. [50] for
experimentation. We rigorously adhere to the data settings of
traditional cross-domain few-shot learning to ensure fairness.
All comparative results are extracted from the respective
papers. Besides, we clarify that our method does not ne-
cessitate model pre-training on the source domain dataset.
Instead, it emphasizes task-level training for each few-shot
task directly within the target domain. Specifically, we train
the model using the support set for each sample task and



evaluate its performance on the query set. For each target
domain, following the implementation of [15, 17, 18, 51],
we conduct experiments by randomly sampling 600 /N-way
K-shot 15-query few-shot tasks, and measure the average
accuracy across these tasks as the evaluation metric. For
each few-shot task, we set the number of training epochs to
100 and the batch size to 4. The hyper-parameters A\; and A\
are both set to 1. Since there is no validation set for model
selection, we use the model from the last training epoch for
evaluation.

For in-domain few-shot learning, the previous methods
first training the model on the base classes of the in-domain
dataset (e.g., mini-ImageNet [52], tiered-ImageNet [53],
CIFAR-FS [54].). Subsequently, the model is tested on new
classes using a few-shot sampling strategy, which gener-
ally includes randomly sampling 600 N-way K-shot tasks.
For each few-shot task, the support set is utilized for model
fine-tuning and classifier construction, after which testing is
conducted on the query set. The average performance across
all few-shot tasks is taken as the final performance metric for
the dataset. To ensure fairness, we maintain the same data
settings as previous works [55-57]. For training, we also
adhere to the configurations established in our traditional
cross-domain few-shot learning setting.

All experiments are conducted on an NVIDIA 3090 GPU
using the PyTorch framework.

3. Revisiting Foundation Models Adaptation for
Extreme Cross-Domain Few-shot Tasks

Details. We revisit some advanced adaptation strategies to
explore the performance of foundation models in extreme
cross-domain few-shot learning. We select three representa-
tive foundation models, namely DINO [33], Supervised ViT
(S-ViT)[32], and Masked AutoEncoders (MAE)[34]. We
revisit adaptation methods in four aspects: feature inference,
adding a classification head, parameter-efficient fine-tuning,
and full-parameter standard fine-tuning. Among these base-
lines, Prototype inference [2] involves directly utilizing the
foundation model for feature extraction, then constructing
prototypes using the k-shot samples from each class, and
finally using these prototypes to predict the class affilia-
tion for test samples. Linear probing refers to learning a
task-specific linear classifier on top of the features extracted
from the foundation model. Additionally, we adopt the low-
rank adaptation (LoRA) method [44] for parameter-efficient
fine-tuning. Standard fine-tuning refers to utilizing few-shot
samples from the target domain to perform full-parameter
updating of the foundation model.

Results. We validate three representative foundation mod-
els (DINO, S-ViT, MAE) under 1-shot and 5-shot settings
on four datasets. The experimental results are presented in

Table 2, Table 3, Table 4, and Table 5. We can draw the fol-
lowing observations from the experimental results. Firstly,
simple feature reuse baselines such as Prototype inference
and Linear probing struggle to perform effectively in this
extreme cross-domain scenario. This contrasts sharply with
the performance of the foundation models under in-domain
settings. This suggests that when distributional differences
are significant, simple feature reuse methods may fail to
harness the potential of the foundation model. Secondly,
LoRA fine-tuning performs even worse than linear probing.
This suggests that adjusting only a subset of parameters is an
inappropriate strategy, as it struggles to correct foundation
model’s excessive memorization of the original distribution.
Additionally, the configuration of such adapters involves
very few learnable parameters, which may exacerbate the
risk of over-fitting on few-shot samples. Thirdly, standard
fine-tuning achieves the best average performance on both
1-shot and 5-shot settings across all four datasets. This in-
dicates that standard fine-tuning remains the most powerful
baseline method. Nevertheless, the performance of standard
fine-tuning remains sub-optimal.

The reason may lie in the hug domain gap and limited
annotated examples in the target task prevents properly adapt-
ing the foundation model to fit the task-specific semantic
characteristics. To alleviate this dilemma, one possible so-
lution is to exploit the pure task-specific knowledge (e.g.,
model trained from scratch using the limited annotated sam-
ples in the target task) to guide the fine-tuning process of
the foundation model. Following this idea, we present a
novel absorption adaptation learning framework, which at-
tempt to enhance the extreme cross-domain generalization
capacity of a pre-trained vision foundation model (e.g., “F-
ViT”). This framework achieves this by through absorbing
some task-relevant knowledge from an expert model (e.g.,
“T-ViT”) during fine-tuning. As a result, our method emerges
as a front-runner, achieving significant performance improve-
ments. For instance, on the ISIC dataset, our method outper-
forms the strongest baseline across three foundation models
by an average gain of 6.81% (1-shot) and 5.28% (5-shot).

4. Further Analysis
4.1. Why utilize expert model?

The motivation for incorporating an expert model into our
framework arises from both theoretical and empirical in-
sights. 1) Theoretically, the expert model, trained exclusively
on the target data, acquires pure task-specific knowledge, un-
tainted by unrelated domain features present in foundation
model pre-training. This domain-specific focus enables the
expert model to emphasize critical patterns relevant to the
target task, effectively guiding the foundation model to refine
its feature extraction toward task-specific modes. Thus, the
expert model functions as a focused advisor, complement-



Table 2. Results on ISIC dataset. The best results are in bold.

| DINO S-ViT MAE | Ave.
Method | 1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
Prototype inference 24.14 34.06 14.72 28.86 11.19 30.27 16.68 31.06
Linear probing 24.94 51.88 21.23 33.66 12.19 51.98 19.45 45.83
LoRA fine-tuning 24.44 50.29 18.45 36.21 20.38 47.95 21.09 44 .81
Stand fine-tuning 26.35 60.95 20.89 39.82 26.82 57.72 24.68 52.83
Ours 37.49 62.90 24.30 44.19 32.68 67.25 31.49 58.11

Table 3. Results on Chest dataset. The best results are in bold.

| DINO | S-ViT | MAE | Ave.
Method | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
Prototype inference 16.43 19.11 18.34 16.79 19.23 13.50 18.00 16.46
Linear probing 18.29 25.29 17.03 17.57 18.08 28.89 17.80 23.91
LoRA fine-tuning 18.29 25.35 15.85 22.09 17.99 24.89 17.37 24.11
Stand fine-tuning 20.05 26.41 17.23 18.65 21.27 27.18 19.51 24.08
Ours 21.36  28.74 | 20.70 28.40 | 22.90 29.44 21.65  28.86

ing the broader, generalized scope of the foundation model,
which, while comprehensive, may overlook domain-specific
nuances critical to task performance. 2) Empirically, we
observe that the expert and foundation models yield comple-
mentary feature representations (as shown in Fig. 1). While
the foundation model provides a robust initialization with
minimal noise, it sometimes fails to capture key task-specific
semantic regions. The expert model, on the other hand, per-
sistently identifies relevant patterns unique to the target task,
albeit with some noise. This interplay suggests that by care-
fully integrating both models, we can harness the specificity
of the expert model alongside the stability and generaliz-
ability of the foundation model, achieving a balanced and
enhanced representation suited for CD-FSL tasks. 3) How-
ever, integrating the models effectively presents a significant
challenge. Conventional approaches such as knowledge dis-
tillation or feature fusion proved insufficient (as presented
in Table 6 and Table 7), with the foundation model’s gen-
eralization tendency often overpowering the expert model’s
task-specific contributions. To address this, we introduce two
novel strategies: masked cross-model unidirectional recon-
struction, which selectively injects task-relevant knowledge
while tempering the foundation model’s propensity for over-
generalization, and decision graph association, which aligns
similarity matrices across models to ensure consistency at
the decision level, facilitating coherent knowledge transfer.
Extensive experiments confirm that our approach improves
CD-FSL performance, underscoring the expert model’s role
in enhancing task-specific insights and validating the effec-
tiveness of our integration techniques.

4.2. Why not use the expert model directly to solve
the target task?

Relying solely on the expert model for the target task
presents significant challenges due to its inherent limitations.
Although the expert model effectively captures task-specific
information, it often learns features that are susceptible to
noise and lacks the robustness required for reliable general-
ization. Nevertheless, it remains a valuable component, as
it can provide critical insights—such as low-level semantic
features and higher-order structural cues—that enhance the
understanding of the target task. To leverage these strengths
while addressing its limitations, we propose two novel ap-
proaches: masked cross-model unidirectional reconstruction
and decision graph association. These methods not only
mitigate noise in the expert model’s output but also enhance
its integration with the foundation model, resulting in a bal-
anced and complementary framework that improves overall
task performance.

4.3. How to avoid the potential over-fitting risk of
expert model?

Our method mitigates the potential over-fitting risk of the
expert model by employing high-order semantic structure
alignment, i.e., the decision graph association. This ap-
proach enforces a structured alignment between the expert
and foundation models, focusing not only on individual fea-
tures but also on their interrelationships within a broader
semantic context. By ensuring that the knowledge transfer
from the expert model to the foundation model is both bal-
anced and refined, our method reduces the risk of over-fitting
that might arise if the models were aligned based solely on
isolated features.

In contrast to traditional knowledge distillation methods,



Table 4. Results on EuroSAT dataset. The best results are in bold.

| DINO | S-ViT | MAE | Ave.
Method | 1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
Prototype inference 59.05 78.70 37.29 61.01 34.48 36.23 43.60 58.64
Linear probing 60.38 83.02 45.41 61.12 33.72 40.15 46.50 61.43
LoRA fine-tuning 60.08 83.09 44.96 62.61 33.56 38.95 46.19 61.54
Stand fine-tuning 60.24 8298 | 4734 6593 | 4149  64.05 | 49.69  70.98
Ours 60.28 83.94 48.42 69.06 43.25 65.34 50.65 72.78
Table 5. Results on CropDisease dataset. The best results are in bold.
| DINO | S-ViT | MAE | Ave.
Method | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
Prototype inference 39.39 73.40 37.62 66.71 791 15.14 28.30 51.75
Linear probing 51.01 84.07 31.92 56.71 13.60 17.48 32.17 52.75
LoRA fine-tuning 52.81 84.07 28.30 56.85 16.06 24.15 32.39 55.02
Stand fine-tuning 52.18 8648 | 37.73 6698 | 21.08 57.74 | 36.99  70.40
Ours 54.27 86.70 41.49 66.53 21.26  58.17 39.00 70.46
which transfer the expert model’s knowledge to the foun- \ ’
dation model in a more direct manner—often leading to 4
over-fitting due to the noisy, task-specific features of the :
expert model—our approach introduces a more holistic and _—
structured alignment. This enables effective integration of (a) Image (b) F-ViT (¢) T-ViT
task-specific knowledge without overwhelming the founda-
tion model with redundant or irrelevant information. i '._, 4
Experimental results confirm that, unlike conventional 4 V'
distillation approaches, our method significantly reduces the A ab ' .
over-fitting risk by promoting a more cohesive integration of (e) Image (f) F-ViT (h) Ours

task-specific knowledge, thereby enhancing generalization
and performance on the target task.

4.4. Whether our approach improves the expert
model?

In our framework, the foundation model and the expert
model collaborate through joint training, bridged by two core
approaches: masked cross-model unidirectional reconstruc-
tion (MCR) and decision graph association (DGA). MCR
explicitly injects the task-specific knowledge of the expert
model into the foundation model, while DGA achieves cross-
model mutual regularization by aligning the higher-order
semantic structures between models. With the assistance of
the DGA module, the foundation model is also able to trans-
fer knowledge to the expert model, thereby enhancing the
quality of the expert model. To validate this, we conducted
experiments on the ISIC dataset under the All-way K-shot
setting. In addition to evaluating 1-shot and 5-shot scenar-
ios, we also explore cases with more shots, as the expert
model’s quality is expected to improve with increased sam-
ples. These experiments aim to validate that our method is
effective not only in few-shot scenarios but also in traditional
large-sample settings.

(g) T-ViT

-

(i) Image () F-ViT ) (i{) T-ViT (1) Ours

(n) F-ViT

(m) Image (o) T-ViT

Figure 1. Complementary observations between F-ViT and T-ViT.

(p) Ours

The experimental results are shown in Table 8. We can
draw two conclusions. First, our approach not only improves
the performance of the foundation model but also enhances
the expert model. Second, as the number of shots increases,
the quality of T-ViT improves. Meanwhile, the comple-
mentarity between T-ViT and F-ViT persists, enabling our
method to continue yielding benefits.



Table 6. Comparing ours with distillation based methods.

[ ISIC [ Chest [ EuroSAT [ CropDisease [ Ave.
Method | 1-shot 5-shot | 1-shot 5-shot | 1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot
Feature-level Distillation 27.76 62.31 22.01 27.26 56.28 79.81 53.58 86.12 39.90 63.87
Logits-level Distillation 27.53 61.54 20.67 25.99 60.88 83.18 54.87 86.51 40.98 64.30
Ours 37.49 62.90 21.36 28.74 60.28 83.94 54.27 86.70 43.35 65.57
Table 7. Comparing ours with fusion based methods.
[ ISIC [ Chest [ EuroSAT [ CropDisease [ Ave.

Method | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot

Cross-attention Fusion 29.34 62.19 20.78 26.73 58.74 82.40 53.71 85.64 40.64 64.24

Decision Fusion 25.44 56.96 19.85 25.50 58.94 82.76 36.29 61.98 35.13 56.80

Ours 37.49 62.90 21.36 28.74 60.28 83.94 54.27 86.70 43.35 65.57

Table 8. Evaluating the improvement of our method over the expert
model baseline.

Method | 1-shot | 5-shot | 30-shot | 300-shot
T-ViT baseline 26.71 53.68 58.34 75.32
T-ViT+Ours 28.64 56.15 61.12 76.43
F-ViT baseline 26.35 60.95 69.43 85.56
F-ViT+Ours 37.49 62.90 70.56 86.07

4.5. Can smaller expert models be used?

In our framework, the selection of the expert model is flexi-
ble, with any Vision Transformer architecture theoretically
suitable. To validate this, we fixed the foundation model
as ViT-Base and selected smaller ViTs as expert models for
the experiments. All experiments were conducted on the
ISIC dataset under the All-way 1-shot setting. As shown in
Table 9, our method consistently outperforms the baselines
across different expert models. However, when the expert
model is too small, such as ViT-Tiny, the performance of our
method significantly declines. In contrast, using ViT-Base
as the expert model yields optimal performance, albeit with
higher computational costs. In conclusion, the choice of
expert model is flexible, with performance gains showing a
linear relationship to the model’s capacity. Higher perfor-
mance gains typically come with increased computational
overhead, meaning the expert model should be chosen based
on available resources in practical deployments.

Table 9. Evaluating smaller T-ViT while keeping F-ViT as ViT-B.

Eexpert Model | ViT-Tiny | ViT-S | ViT-B

T-ViT baseline 21.15 27.42 26.71
F-ViT baseline 26.35 26.35 26.35
Ours 26.56 34.41 37.49

" | 4

(a) Image (b)Base  (c) w/ MCR (d) w/DGA  (e) Ours
w . il . n
(f) Image (g Base  (h) w/ MCR (i) w/ DGA (j) Ours

tr

(k) Image () Base  (m) w/ MCR (n) w/ DGA (0) Ours
| ! E .
(p) Image (q) Base (r) w/ MCR  (s) w/ DGA (t) Ours

Figure 2. Feature visualization for baseline and our method.

4.6. Visualization

Complementary observations. We compare feature high-
lights to visually illustrate the complementary characteris-
tics between pre-trained vision foundation model and task-
specific expert model. The results are depicted in Fig. 1.
Among them, “F-ViT” represents the original foundation
model without being trained on the target domain, while
“T-ViT” represents the task-specific expert model trained
from scratch using a small number of samples from the
target domain. In each figure, the first row represents the
highlighted image, while the second row displays the corre-
sponding feature activation map. We can draw the following
observations. Firstly, although the foundation model can pro-
vide good initial features, it does not comprehensively cover
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Figure 3. Classification accuracy w.r.t values of masking ratio.

all the target attributes. Secondly, the task-specific model
can capture potential properties relevant to the target task,
but it may also introduce undesirable noise, leading to poor
generalization. Comparing “F-ViT” and “T-ViT”, we can ob-
serve that their feature activations exhibit complementarity.
This motivates us to invent a novel complementary collab-
orative learning framework, which endows the model with
cross-domain generalization capabilities by amalgamating
the unique strengths of both the foundation model and task-
specific expert model. The visualization results align with
our expectations, demonstrating that our proposed approach
can integrate the knowledge of both “F-ViT” and “T-ViT”,
resulting in a robust response, such as clearer activation
regions and more intense activation values.

Visual contrasts. We employed the Rollout technique [58]
for visual analysis. We compare the proposed method with
the baseline case, and also demonstrate the effect of using in-
dividual components. The visualization results are depicted

in Fig. 2. We can derive the following intuitive understand-
ing. Firstly, compared to the baseline, our method can high-
light a broader range of feature areas. This suggests that our
method accurately captures the underlying patterns of the
target, providing a solid foundation for subsequent classifier
decisions. Therefore, our method demonstrates better gener-
alization, resonating with the previous quantitative results.
Secondly, when our core components (e.g., MCR, DGA)
are used independently, our method can also outperform the
baseline case. This observation further confirms the contri-
bution of the proposed components. Additionally, there is
diversity in feature activation among different components.
This indicates that the proposed MCR and DGA approaches
can function independently while also integrating effectively,
thereby creating a powerful and cohesive framework.

4.7. Hyper-parameter validation

We investigate the impact of the mask ratio hyper-parameter,
exploring values within the range 0.3, 0.4, 0.5, 0.6, 0.7. The
experimental results are presented in Fig. 3. The findings
indicate that variations in the masking ratio between 0.3 and
0.7 lead to different, albeit minor, changes in performance
across the four datasets. Therefore, unless specified other-
wise, we adopt a uniform mask ratio of 0.5 for all datasets in
our experiments.
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