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A. Details of Problem Formulation

A.1. Explanation of Different Training Strategies
In Sec. 3 of the main paper, we show the comparison of
one-time training, manual training, and TurboTrain in Fig.2.
The numerical experiment results of three training strategies
are provided in Tab. S1.
One-time training strategy. This strategy directly trains
all the modules in the end-to-end framework. Row 1 (One-
time (s-f)) indicates we only train multi-agent single-frame
perception. Row 2 (One-time (s-a)) indicates we only train
single-agent perception and prediction. Row 3 (One-time
(all)) indicates we only train multi-agent perception and
prediction.
Manual training. Rows four to seven indicate the per-
formance breakdown of the manual training strategy. For
the manual training strategy, we divide the training process
into four stages. Stage 1: Single-Agent Detection (Row
4). We train the detection backbone on single frames to
build a robust foundation for object recognition. Stage 2:
Single-agent Temporal Prediction (Row 5). We freeze the
detection backbone and train a dedicated temporal network
and prediction head to capture complex temporal dynamics
for the prediction task. Stage 3: Single-agent Perception
and Prediction Joint Fine-Tuning (Row 6). We unfreeze
the entire network and fine-tune all components end-to-end,
harmonizing the perception and prediction tasks. Stage 4:
Multi-Agent Fusion (Row 7). We incorporate a multi-agent
fusion module with dynamic loss weighting to jointly opti-
mize spatiotemporal representations across agents, ensuring
balanced performance.
TurboTrain. Row 8 indicates that we only use the Pretrain
stage of TurboTrain and finetune the model without using
the Balance stage. Row 9 indicates we use the whole Tur-
boTrain pipeline. From the results, we observe that 1) one-
time training faces challenges with multi-agent spatiotem-
poral feature learning; 2) manual training strategy avoids
such learning failure but requires more monitoring stages;
3) TurboTrain achieves superior performance while avoid-
ing such learning inefficiency.

A.2. Motivating Research Questions
Q: Why is it challenging for efficient and balanced
multi-task learning for multi-agent perception and pre-
diction and why is such a problem important?

Table S1. Comparison of One-time training, Manual training, and
TurboTrain on the V2XPnP-Seq-VC dataset with the V2XPnP
model. -x represents the performance decline compared to the
manual training strategy, and +x represents the improvement. In
one-time training strategy, ”s-f” indicates the single frame model,
”s-a” means the single agent model, and ”all” represents the
multi-frame multi-agent model. Moreover, ”No Bal” represents
a pretrain-only model without the balance stage.

Strategy AP@0.5(%) ↑ ADE(m) ↓ FDE(m) ↓ MR(%) ↓ EPA(%) ↑

One-time (s-f) 68.3-2.0 - - - -
One-time (s-a) 55.1-15.2 1.60 2.99 37.5 29.9-12.9

One-time (all) 39.0-31.3 1.42 2.44 30.0 15.0-27.8

Single-agent Det 45.2 - - - -
Temporal Pred 48.2 2.03 3.55 38.3 20.2
Joint Tuning 57.4 1.58 2.89 38.3 32.5
Multi-agent Fus 70.3 1.53 2.80 37.8 42.8

TurboTrain (No Bal) 70.3 1.54 2.80 37.2 43.4
TurboTrain 72.2+1.9 1.49 2.75 35.0 45.5+2.7

A: Training a system that processes data from multiple
agents across several frames presents significant challenges.
Conventional one-time training, where all tasks are learned
jointly from scratch, fails to capture the intricate features
that arise from merging temporal and multi-agent data.
This is due to the inherent complexity of integrating spa-
tial and temporal information, which often leads to unstable
training and suboptimal performance. For instance, tasks
like detection may dominate, thereby overshadowing others
such as trajectory prediction. As demonstrated in Tab. S1,
configurations involving either single-agent multi-task or
multi-agent single-task scenarios do not encounter these is-
sues, whereas the multi-agent multi-task setup places much
higher demands on the feature learning process. Moreover,
manual multi-stage training strategies heavily depend on the
careful selection of checkpoints at each stage, and system
errors tend to accumulate as the number of stages increases.
This approach also relies on annotated labels, making it less
effective in scenarios where data is scarce. These challenges
highlight the need to thoroughly investigate and address this
learning problem. The following questions further clarify
our motivation for developing the solutions presented in our
work.
Q: Why use mask reconstruction pretraining?
A: We adopt mask reconstruction pretraining to enable our
model to learn robust features without relying on annotated
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labels. This approach generates a comprehensive 4D repre-
sentation, which serves as a strong initialization for critical
components in our end-to-end framework—namely, the 3D
Detection Encoder, Temporal Fusion Module, and Multi-
agent Fusion Module. As demonstrated in our main pa-
per, each of these modules plays an essential role in system
performance. By masking portions of the temporal input
data and requiring the network to reconstruct them for each
agent, we compel the model to learn the scene’s underlying
structure as well as sensor distributions of heterogeneous
agents. Our dual reconstruction strategy, which operates at
both the point level and voxel level, allows the pretrained
module to capture detailed 3D structures for the perception
task and to understand scene occupancy layouts for the pre-
diction task. This methodology proves particularly valuable
when data is scarce or incomplete, as it enables the model
to extract fine details at multiple scales, improving its abil-
ity to handle occlusions and missing data—common chal-
lenges in real-world driving scenarios. Furthermore, our
experiments confirm the effectiveness of this approach in
data-scarce environments.
Q: Why use balancing in multi-task learning?
A: Balancing is critical in our multi-task setup. Different
tasks (like detection and prediction) can produce conflict-
ing gradient signals during training, meaning one task im-
proves while another is worse. Our approach uses a conflict-
suppressing gradient alignment mechanism to remove the
conflict components between multiple tasks. This helps sta-
bilize training and improves overall performance by miti-
gating the negative cross-task interference. Moreover, our
hybrid training strategy alternates between free and bal-
anced gradient steps, making the training process more ef-
ficient without a heavy computational cost.

B. Implementation Details
In this section, we provide detailed configurations for our
TurboTrain paradigm. Moreover, we go further to the base-
line models used in our experiments for cooperative percep-
tion and prediction tasks.

B.1. Baseline Model Details
LiDAR Perception Backbone. We adopt the anchor-based
SECOND model [3] as the LiDAR feature extraction back-
bone for all the baseline models. The voxel resolution in the
experiment is set to 0.1 m in both the x and y directions and
0.2 m in the z direction, with a maximum of 5 points per
voxel and up to 32,000 voxels. Additionally, we configure
2 anchors per BEV grid cell.
Multi-Agent End-to-End Methods. As research into end-
to-end multi-agent perception and prediction tasks is still
in the early stage, most existing studies primarily focus
on single-frame spatial fusion or incorporating short-term
temporal information. Therefore, we adopt the V2XPnP

end-to-end framework and benchmark [8] to reimplement
and evaluate state-of-the-art (SOAT) V2X fusion methods.
Specifically, we follow the V2XPnP framework and lever-
age the baseline temporal fusion model of V2XPnP to
build the end-to-end spatiotemporal fusion framework for
multiple tasks and incorporate SOAT multi-agent fusion
methods as baselines, including FFNet [6], DiscoNet [4],
CoBEVFlow, F-Cooper [1], and V2XPnP [8]. From the
main experiment results in Sec. 5, we demonstrate that our
TurboTrain method is generalizable across various fusion
methods.
Map Feature Extraction. HD maps for prediction are
modeled as sets of polylines, where each map polyline
comprises 10 sequential points. For BEV projection, each
grid cell retains the five nearest polylines to reduce re-
dundancy. Each waypoint is defined by seven attributes:
(x, y, dx, dy, type, xpre, ypre), which captures its spatial
coordinates, orientation, lane type, and preceding position.
These attributes are embedded via MLP layers and the map
interaction is captured by one Transformer layer.

B.2. Additional Pretraining Details
Formulation of occupancy reconstruction loss. Given the
predicted occupancy value and the ground truth occupancy
value, we define the occupancy prediction loss as:

Locc = −α
(
1− Pri

)γ
log(Pri), (S1)

where Pri represents the predicted probability of voxel i.
The weighting factor α is set to 2, and the weighting factor
γ is set to 0.25.

B.3. Detailed Experimental Setting
Training details. The pretraining network contains a 3D
Backbone, Temporal Fusion module, Multi-agent Fusion
Module, and two separate lightweight decoder heads for
reconstruction tasks. During the finetuning stage, only
the pretrained 3D Backbone, Temporal Fusion module and
Multi-agent Fusion Module will be taken. During pretrain-
ing, we employ AdamW [2] optimizer with a weight decay
of 1×10−2 to optimize our models. We train the model with
a batch size of 4 for 15 epochs using a learning rate of 0.002,
and we decay the learning rate with a cosine annealing [5].
We use a masking ratio of 0.7 in our main experiments and a
fixed predicted point cloud number of 20 for point cloud re-
construction. During the fine-tuning stage, the optimization
process is identical to the train-from-scratch baselines.
Testing details. During testing, a fixed agent is designated
as the ego agent in each cooperative scenario, while during
training, the ego agent is randomly assigned. Following the
real-world evaluation setting [7], the communication range
is set to 50 meters with surrounding agents evaluated within
the range of x ∈ [−102.4, 102.4] m and y ∈ [−40, 40] m,
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Figure S1. Qualitative comparison of different training strategies applied to the different fusion methods for multi-agent perception and
prediction tasks. The proposed TurboTrain framework significantly enhances both detection and prediction quality over different fusion
methods. Models marked with ∗ indicate our reimplementations to ensure consistency with prior works.

and messages exceeding 50 meters are discarded. The his-
torical observation length is set to 2 seconds (2 Hz), while
the prediction horizon extends to 3 seconds (2 Hz). All
models are trained using the Adam optimizer [2] with early
stopping.

C. Additional Results
C.1. Ablation Studies
Ablation on Reconstruction Objective Design. We eval-
uate the impact of different reconstruction objectives by
varying the number of historical frames used, as shown in
Tab. S2. Specifically, we compare reconstructing from all

available historical frames versus using only half. Given
that the historical observation window is set to 2 seconds,
our results indicate that leveraging a larger number of past
frames substantially enhances the model’s performance,
highlighting the importance of temporal context in repre-
sentation learning.

Ablation on Masking ratio. We investigate the effect of
varying the masking ratio and observe that a ratio of 0.7
yields the best performance, as shown in Tab. S3. This sug-
gests that an optimal level of information removal is cru-
cial for effective learning, balancing the trade-off between
preserving sufficient context and encouraging robust feature
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extraction.

Table S2. Ablation on Input Temporal Frames on V2XPnP-Seq-
VC dataset with V2XPnP model. T denotes the total number of
historical frames.

Input Frames AP@0.5 ↑ EPA ↑
T/2 64.2 38.8
T 70.3 43.4

Table S3. Ablation on Reconstruction Mask Ratio on V2XPnP-
Seq-VC dataset with V2XPnP model.

Mask Ratio AP@0.5 ↑ EPA ↑
0.7 70.3 43.4
0.8 67.1 42.9
0.9 66.4 42.1

C.2. Qualitative Results
Fig. S1 shows additional qualitative comparisons across
vehicle-centric and vehicle-to-vehicle scenario with various
models: (1) No Multi-Agent Fusion, (2) FFNet [6], and
(3) V2XPnP [8]. Our TurboTrain framework consistently
improves both detection and prediction performance across
these configurations.
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