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A. More Experiments and Discussions
A.1. Why Specifically Four Degradation Types?
In this paper, we particularly focus on complex degradation,
an arbitrary mixture of four fundamental degradation types:
low resolution, motion blur, defocus blur, and real noise.
Those degradations stem from capture condition, capture
device and post-processing pipelines. This background is
clarified in the manuscript, including the abstract and the
first paragraph of the introduction section.

Apart from the four types of degradations, in the low-
level vision literature, there are other types of degradations
such as rain, haze, fog, and snow. These degradations are
not caused by capture device or post-processing pipelines,
and hence are not included in the scope of this paper. The
effectiveness of our method on these types of degradations
is left for future study.

A.2. Time Complexity and Search Space
As mentioned in the ”Implementation Details” in the
paper, the default search space parameters for UniRes
are (γ, δ) = (−0.2, 1.2), with an interval of 0.2.
Namely, each weight wi has n = 7 possible values
(i.e., −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2). Additionally, the
weights should sum to one, i.e.,

∑K
i=1 wi = 1.0, and only

one negative value is allowed among wi, i = 1, . . . ,K.
While the complexity of the grid search algorithm is O(nK),
the concrete size of the search space is not nK due to the
two constraints. The search space size in the default settings
is 1512. We provide a Python snippet below for the search
space and contraints.

1 from typing import *
2 import numpy as np
3 import itertools as it
4
5 def search_grid(vmin: float = -0.2,
6 vmax: float = 1.2,
7 nvars: int = 6,
8 interval: float = 0.2,
9 ) -> List[List[float]]:

10 """
11 Find all valid possible combination weights.

*Work done during internship at Google LLC.

12 """
13 values = np.arange(vmin, vmax + 1e-3, interval)
14 allcombs = it.product(*([values] * nvars))
15 allcombs = [np.array(x) for x in allcombs]
16 # figure out valid combinations
17 validcombs = []
18 for x in allcombs:
19 if not np.abs(1 - np.sum(x)) < 1e-5:
20 # they must sum to one
21 continue
22 elif not np.count_nonzero(x < -1e-5) <= 1:
23 # no more than one negative value
24 continue
25 else:
26 # this one is valid
27 validcombs.append(x.tolist())
28 print(’Valid Combinations:’, len(validcombs))
29 return validcombs
30
31 if __name__ == ’__main__’:
32 validcombs = search_grid(-0.2, 1.2)

A.3. Detailed Results on DiversePhotos×1

The grid search algorithm for optimization has an exponen-
tial complexity. The search space size given the default set-
ting of UniRes is 1512. The inference time of UniRes per im-
age for a given set of combination weights is 2.332±0.005s
on JAX/TPUv5. MUSIQ takes 0.1s per image on CPU. The
full experimental details on DiversePhotos×1, including the
total inference time per image is shown in Tab. 1. Two po-
tential speed-up methods are discussed in the manuscript,
and they are also included in this table. Some other related
works, including AutoDIR [10] are not compared in the pa-
per due to space limit, and their performance lagging behind
the other methods such as DiffBIR [15] and SUPIR [21] by a
margin. The PromptIR [18] is advertized as “all-in-one” im-
age resotration, but the official model only support denoise,
derain, and dehaze.

Potential future directions for accelerating the proposed
method includes, but are not limited to (1) distillation for
single-step inference, (2) caching mechanisms, (3) better
degradation-aware image features and combination weight
prediction. They are beyond the scope of this paper, so we
leave them for future explorations.
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Method Combination Weights Platform Inference Time per image (seconds) ClipIQA MUSIQ ManIQA

SwinIR [14] N/A PyTorch/Nvidia A100 0.374± 0.063 0.3727 49.26 0.3008
Restormer [22] N/A PyTorch/Nvidia A100 0.132± 0.035 0.3407 41.80 0.2243
PromptIR [18] N/A PyTorch/Nvidia A100 0.136± 0.032 0.3069 36.20 0.1950

AirNet [13] N/A PyTorch/Nvidia A100 0.074± 0.033 0.3031 35.93 0.1893
AutoDIR [10] N/A PyTorch/Nvidia A100 10.633± 15.909 0.3260 40.32 0.2147
NAFNet [4] N/A PyTorch/Nvidia A100 0.023± 0.007 0.3372 43.62 0.2323

StableSR [20] N/A PyTorch/Nvidia A100 11.002± 0.171 0.6277 61.39 0.3992
DiffBIR [15] N/A PyTorch/Nvidia A100 6.522± 0.034 0.6453 59.97 0.4922
SUPIR [21] N/A PyTorch/Nvidia A100 15.601± 0.629 0.5060 51.68 0.3745

DACLIP-IR [16] N/A PyTorch/Nvidia A100 4.940± 0.064 0.3497 46.16 0.2567
RAM-SwinIR [19] N/A PyTorch N/A 0.3367 40.25 0.2842

RAM-PromptIR [19] N/A PyTorch N/A 0.3110 36.55 0.1920

UniRes Grid search JAX/TPUv5 (2.332 + 0.1)× 1512 ≈ 3677 0.6519 68.22 0.5021
UniRes Most frequent 8 sets of combination weights JAX/TPUv5 (2.332 + 0.1)× 8 = 19.456 0.6613 68.02 0.5101
UniRes Most frequent 6 sets of combination weights JAX/TPUv5 (2.332 + 0.1)× 6 = 14.592 0.6633 67.92 0.5096
UniRes Most frequent 4 sets of combination weights JAX/TPUv5 (2.332 + 0.1)× 4 = 9.728 0.6655 67.68 0.5095
UniRes Most frequent 2 sets of combination weights JAX/TPUv5 (2.332 + 0.1)× 2 = 4.864 0.6581 66.89 0.5052
UniRes Most frequent 1 set of combination weights JAX/TPUv5 (2.332 + 0.1)× 1 = 2.432 0.6590 66.44 0.5042
UniRes Average optimal combination weights JAX/TPUv5 (2.332 + 0.1)× 1 = 2.432 0.5941 62.10 0.4266
UniRes Random Forest (skip search) JAX/TPUv5 0.035 + 2.332 = 2.367 0.5873 61.91 0.4257

Table 1. Full Quantitative Experimental Details on DiversePhotos×1.

A.4. More Visualizations and Failure Cases

In this section, we provide additional visualization results
on DiversePhotos×1, as shown in Fig. 1, and Fig. 2. Some
failure cases are shown in Fig. 3. The failures include hallu-
cination, color change, artifacts, and failure to restore some
degradations. See the caption of Fig. 3 for details.

A.5. Task Weight Sensitivity

We provide examples to demonstrate how the changes in
combination weights in Eq. (2) could impact the results.
Fig. 4 shows the trade-off effect between super resolution
and denoise, where a smooth trade-off between two different
effects can be observed by adjusting the combination weights.
Fig. 5 shows different results on the same input LQ image
when applying different combination weights. Fig. 6 shows
the MUSIQ score curves when trading-off every pair of
restoration tasks.

The average optimal weight over the DiversePhotos×1
dataset is (BR=0.07, SR=0.12, MD=0.07, DD=0.06,
DN=−0.15, DownLQ=0.83). The denoing task has a neg-
ative weight in average largely because the MUSIQ metric
prefers sharp images, while the denoiser (the DN=1 case,
i.e., the weight for denoising is set to 1, while the rest are
set to zero) does not sharpen the given image. So the de-
noiser is not preferred by MUSIQ in most cases, and the
algorithm leans towards using it as a negative classifier-free
guidance term [8] to push the latent diffusion prediction to
be closer to other high-quality directions. Nevertheless, the
denoiser is qualitatively effective as demonstrated by the
example in Fig. 4. If the average optimal weight is used for
all images from DiversePhotos×1, the results are 0.5941,
62.10, 0.4266 for ClipIQA, MUSIQ, and ManIQA, respec-
tively. The most popular optimal weight on the dataset is

Model Task Weights PSNR SSIM LPIPS↓ FID↓ ClipIQA MUSIQ ManIQA

DIV2K (3000 Crops from StableSR, size 512× 512)

StableSR - 21.94 0.5343 0.3113 24.44 0.6771 65.92 0.4201
DiffBIR - 21.82 0.5050 0.3670 32.72 0.7300 69.87 0.5667
SUPIR - 20.85 0.4945 0.3904 31.60 0.7134 63.69 0.5477

DACLIP-IR - 21.93 0.4864 0.4881 71.93 0.3295 48.68 0.2654
SR-Only - 22.12 0.5352 0.3028 21.17 0.6083 66.45 0.4366
UniRes SR=1 21.41 0.5127 0.3325 25.99 0.6308 67.29 0.4567

GoPro (1111 Images)

UniRes MD=1 25.04 0.7629 0.1604 11.83 0.3073 58.65 0.2630

DPDD (74 Images)

UniRes DD=1 24.03 0.6980 0.1678 - 0.5088 63.42 0.4198

SIDD (1280 Crops, size 256× 256)

UniRes DN=1 26.94 0.8120 0.1821 - 0.2945 22.19 0.2603

Table 2. Evaluation on Well-Isolated Restoration Tasks. In this
paper, we focus on complex degradations, instead of these well-
isolated degradations.

(DN=−0.2, DownLQ=1.20), where 66 out of 160 images
(41.25%) reach the peak MUSIQ value. If this most pop-
ular optimal weight is used for all images, the results are
0.6590, 66.44, 0.5042 for ClipIQA, MUSIQ, and ManIQA,
respectively.

A.6. Evaluation on Well-Isolated Degradations

The focus of this paper is real-world complex degradations,
instead of well-isolated degradations. The quantitative eval-
uation for those well-isolated tasks, such as super-resolution,
motion deblur, defocus deblur, and denoise are carried out
for sanity testing purpose. We evaluate our model on the
validation sets of DIV2K [3]1, GoPro [17], DPDD [2], and
SIDD [1]. The quantitative metrics can be found in Tab. 2.

1huggingface.co/datasets/Iceclear/StableSR-TestSets
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LQ StableSR DiffBIR SUPIR DACLIP-IR Ours

Figure 1. More visualizations about real-world image restoration on the DiversePhotos×1 dataset.

A.7. Positive and Negative Prompts

Recent works [15, 21] demonstrate the effectiveness of posi-
tive and negative prompts (e.g., “blur”, “low-quality”, etc.).
To make the model correctly understand the negative-quality
concepts, [21] explicitly introduce negative-quality images
to the training samples. Similarly, to extend our proposed
method with positive and negative prompt words, we need
to modify the training data pipeline.

In particular, after sampling each training tuple with (LQ
image, text prompt, HQ image), there is (1) 1% probability
that the text prompt will be replaced with positive-quality
words: “photorealistic, clean, high-resolution, ultra-high
definition, 4k detail, 8k resolution, masterpiece, cinematic,
highly detailed.”; (2) 1% probability that the text prompt will
be replaced with the negative-quality words: “oil painting,
cartoon, blur, dirty, messy, low quality, deformation, low res-
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LQ StableSR DiffBIR SUPIR DACLIP-IR Ours

Figure 2. More visualizations about real-world image restoration on the DiversePhotos×1 dataset.

olution, over-smooth.”, and meanwhile swap the LQ image
and HQ image; (3) 98% probability that the training tuple is
left intact. This modification allows the model to properly
understand the concept of “positive quality” and “negative
quality”, which is similar to the observation in [21].

Then we validate the impact of those positive and neg-
ative words on the DiversePhotos×1 dataset. In particular,
based on the optimal weights obtained by grid search, if

we add the diffusion latent prediction for the positive words
ϵθ(zt, zLQ, spositive) with weight +1.0, and that for the neg-
ative words ϵθ(zt, zLQ, snegative) with weight −1.0, the re-
sults will be 0.6748, 69.70, 0.5354 for ClipIQA, MUSIQ,
and ManIQA, respectively. Comparing to the UniRes results
under the default setting (i.e., 0.6519, 68.22, 0.5021), the
positive and negative words leads to a slight performance
gain. Further increasing the absolute values for their weights
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LQ StableSR DiffBIR SUPIR DACLIP-IR Ours

Figure 3. Failure cases on the DiversePhotos×1 dataset. 1st row: our model does not make improvement in image details; 2nd row: our
model (occasionally) fails to keep fidelity while improving resolution; 3rd row: our model removes noise but fails to remove defocus blur;
4th row: our model removes noise but introduces non-existing mesh texture; 5th row: our model removes low resolution and motion blur, but
changes the color of the leaves; 6th row: a hard example on which all models failed to restore.

may occasionally lead to artifacts according to our observa-
tion. Extending our proposed method with positive words
and negative words is effective.

A.8. Limitation of Non-Reference Metrics

Our method employs MUSIQ [11] as an approximation to hu-
man perceptual preference for grid search. However, MUSIQ
is not fully aligned with human, and can lead to some dis-
crepancies where the grid search result is not visually the
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LQ SR=1.0, DN=0.0 SR=0.8, DN=0.2 SR=0.6, DN=0.4

SR=0.4, DN=0.6 SR=0.2, DN=0.8 SR=0.0, DN=1.0

Figure 4. Qualitative demonstration on combination weight sensitivity. In this example, we adjust the weights for super resolution (SR) and
denoise (DN), and keep the rest weights to zero. As shown from the images, the SR=1 case can improve the details to the tree, but does not
remove all noise. In contrast, the DN=1 case can remove the noise, but not improve the details of the tree. By trading off the two weights, we
can observe a smooth trade-off between the two effects. Zoom in for image details.

LQ BR=1.0 SR=1.0 MD=1.0

DD=1.0 DN=1.0 DownLQ=1.0 Grid search

Figure 5. Qualitative demonstration on the same LQ input with different weights. In particular, “SR=1.0” means the weight for super
resolution is 1.0, while the rest weights are set to 0.0. Zoom in for image details.
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best. An example for such discrepancy is shown in Fig. 7.
Potential future work may involve incorporating better image
quality metrics.

A.9. Discussion on Some Technical Details
How to deal with any-resolution input. This paper
only evaluate 512 × 512 resolution images following Sta-
bleSR [20] and DiffBIR [15]. Tiling methods (e.g., the one
in Fig. 4 in the StableSR paper) can deal with any-resolution
images. But tiling method is beyond the scope of paper.
Why probability (0.32,0.28,0.18,0.22) in Section 4. This
is calculated using the log number of 512 × 512 crops in
the training data for the four tasks. We empirically find this
slightly better than an equal probability across tasks.
Why range [-0.2, 1.2] and only one negative weight. We
empirically observe that either a larger range (< 0.2 or >
1.2), or allowing more than one negative weight, has a much
higher chance for the model to generate visual artifacts.
How are the frequent combinations choisen in Table 5.
We obtain the (MT-A feature, optimal combination weight)
pairs from the 120 additional images (mentioned in the dis-
cussion section in the paper). These pairs are then used to
train a Random Forest Regressor (from sklearn.ensemble).
Finally we use the regressor to predict combination weights
for DiversePhotos.

B. Dataset Details
B.1. DiversePhotos

Low Resolution Motion Blur Defocus Blur Noise sum

SPAQ [6] 20 17 6 21 64
KONIQ [9] 14 4 14 8 40
LIVE [7] 6 19 20 11 56

sum 40 40 40 40 160

Table 3. DiversePhotos×1 Dataset Statistics. It contains 160 im-
ages in total, dedicating 40 images for each of the dominating
degradation types: low resolution, motion blur, defocus blur, and
noise. The table shows the number of images we curated from each
public dataset for each degradation.

The “DiversePhotos” dataset is our curation of test im-
ages, curated from SPAQ [6], KONIQ [9], and LIVE [7].
The images in DiversePhotos collectively cover multiple mo-
bile devices and DLSR cameras, as well as a wide range of
degradations.

DiversePhotos×1. The DiversePhotos×1 image set in-
volves 160 images, with 40 images for each dominating
degradation: low-resolution, motion blur, defocus blur, and
noise. Each image is in 512× 512 resolution. See Tab. 3 for
the statistics.

DiversePhotos×4. This set of test images are the 128×
128 center crops of the DiversePhotos×1 images.

Steps for reproducing “DiversePhotos×1”:

1. Download SPAQ [6], KONIQ [9], and LIVE [7] datasets.
2. Gather images whose file names are mentioned in the

following 12 listings.
3. Center-crop all images from SPAQ and KONIQ datasets

to 512× 512 resolution.
4. Resize (bicubic) all images from LIVE dataset (from

500× 500) to 512× 512 resolution.
(SPAQ, low resolution as dominating degradation, with other degra-
dations): 00019, 00025, 00033, 00109, 00192, 00226, 00251,
00381, 00414, 00559, 00561, 00585, 00743, 03973, 04085, 04136,
04270, 04317, 04334, 06682.

(SPAQ, motion blur as dominating degradation, with other degrada-
tions): 00043, 00075, 00121, 00161, 00175, 00178, 00236, 01868,
03513, 04089, 04272, 04380, 06341, 06863, 10388, 10391, 10495.

(SPAQ, defocus blur as dominating degradation, with other degra-
dations): 00125, 00212, 00282, 04379, 06727, 09121.

(SPAQ, noise as dominating degradation, with other degradations):
00077, 00086, 00096, 00143, 00187, 00199, 00292, 00365, 00450,
04337, 04345, 06485, 06703, 07121, 07162, 07394, 07494, 07866,
07903, 08108, 09682.

(KONIQ, low resolution as dominating degradation, with
other degradations): 1755366250, 187640892, 2096424103,
2443117568, 2 6393826, 2704811, 2836089223, 2956548148,
3015139450, 3435545140, 3551648026, 4378419360, 527633229,
86243803.

(KONIQ, motion blur as dominating degradation, with other degra-
dations): 2367261033, 3147416579, 331406867, 62480371.

(KONIQ, defocus blur as dominating degradation, with other
degradations): 1306193020, 315889745, 55711788, 1807195948,
206294085, 2166503846, 2214729676, 23371433, 2360058082,
2950983139, 3149433848, 324339500, 427196028, 518080817.

(KONIQ, noise as dominating degradation, with other degra-
dations): 1317678723, 1987196687, 218457399, 2593384818,
2837843986, 2867718050, 3727572481, 4410900135,

(LIVE, low resolution as dominating degradation, with other degra-
dations): 110, 723, 760, 805, 819, 875.

(LIVE, motion blur as dominating degradation, with other degrada-
tions): 1017, 104, 1156, 12, 154, 239, 270, 283, 29, 429, 458, 460,
468, 659, 663, 700, 732, 810, 856.

(LIVE, defocus blur as dominating degradation, with other degra-
dations): 337, 550, 592, 698, 713, 714, 717, 731, 737, 750, 751,
787, 788, 855, 862, 873, 874, 876, 884, 887.

(LIVE, noise as dominating degradation, with other degradations):
1001, 1011, 1024, 1037, 1055, 1079, 1098, 1149, 370, 443, 5.

We will provide public download links to the resulting
images in the future.

B.2. OID-Motion
To create a diverse dataset of degraded images, we simulated
camera shake blur as described in [5]. This involves generat-
ing random blur kernels with a range of intensities and sizes,
which were then applied to high-quality images from the
Open Image Dataset [12] to simulate per-object motion blur.
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We further degraded these images by introducing lens blur
(using Gaussian blur kernels), shot noise, read-out noise, and
JPEG compression. By randomly sampling the parameters
for each degradation, we created a dataset that encompasses
a wide spectrum of image quality, from heavily degraded to
almost no degradation. Some OID-Motion sample images
are shown in Fig. 8.
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LQ: Grid search:

Figure 6. The trade-off curves for the example LQ image between each pair of restoration tasks: blind restoration (Blind), super resolution
(Supre-Res), motion deblur (Motion), defocus deblur (Defocus), denoise (Denoise), and DownLQ. Here we only control the two weights for
each pair of tasks, while keeping the rest weights as zero. For reference, the optimal weights (through grid search) for this LQ example are
(MD=0.6,DN=-0.2,DownLQ=0.6).

9



LQ MD=1 Grid search

Figure 7. Demonstration of the occasional discrepancy between human preference and non-reference metric. The grid search result (right)
removes motion blur from the LQ (left), but also impacts fidelity. However, by manually setting the weight for motion deblur (MD) to 1 and
the rest to zero, a visually better result can be obtained (middle). This is an example where non-reference metric is not fully aligned with
human preference.

LQ HQ LQ HQ LQ HQ

Figure 8. Samples from the OID-Motion training dataset. It is simulated with the camera shake blur [5] on the Open Image Dataset [12].
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