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A. Implementation Details

In this section, we provide detailed configurations for cooper-
ative perception and prediction tasks, including the baseline
models used in our experiments and the proposed V2XPnP
framework.

A.1. Benchmark Model Details

PointPillar Backbone. For all experiments, we employ the
anchor-based PointPillar model [8] as the LiDAR Feature
Extraction backbone. The voxel resolution is set to 0.4
meters in both the = and y directions, with a maximum of 32
points per voxel and a total of 32,000 voxels. Additionally,
we set the number of anchors per grid cell to 2.

Intermediate Fusion Methods. We implement several state-
of-the-art single-frame intermediate fusion methods, includ-
ing V2VNet [13], F-Cooper [2], DiscoNet [10],CoBEVFlow

[14], FFNet [21], V2X-ViT [16], and our proposed V2XPnP
model, integrating them with our end-to-end model to re-
place the spatio-temporal fusion module. The model settings
and configurations for the fusion module adhere to the origi-
nal implementations.

Map Feature Extraction. HD maps are represented
as sets of polylines, with each polyline comprising 10
points. Because the map is projected onto the BEV
space, each grid only contains the five nearest polylines.
Each waypoint in a polyline contains seven attributes:
(x,y,dy, dy, type, Tpre, Ypre), representing position, direc-
tion, lane type, and previous position. These attributes are
encoded using MLP layers into a 256 hidden dimension
feature, followed by 1 or 2 Transformer layers with two
attention heads to model interactions among map elements.
Decoupled Attention Predictor. For the decoupled per-
ception and prediction pipeline, we implement an attention-
based predictor for trajectory-level prediction tasks. This
predictor utilizes a 1D Convolution + LSTM Network [4]
to encode temporal historical trajectories and a Transformer
layer to capture the interaction among objects and the map,
then an LSTM-based decoder generates the future predicted
trajectories. All trajectory data, including historical and pre-
dicted trajectories, are represented in the local coordinate
frame of each object.

A.2. V2XPnP Model Details

Temporal Attention. To capture the temporal dependence,
we initialize the historical timestamp sequence using Sinu-
soidal positional encodings conditioned on time and further
process these encodings through a Linear layer. The tempo-
ral attention block in the multi-frame temporal fusion module
has four attention heads. To enhance the inter-frame feature
representation, we stack three temporal fusion modules with
the temporal attention block.

Self-spatial Attention. This block is applied following
either the temporal attention or the multi-agent spatial atten-
tion. In self-spatial attention, the feature map is partitioned
into patches using common window sizes of (2,4, 8). Given
the complexity of spatio-temporal fusion across multiple
agents, the self-spatial attention module employs a higher
number of attention heads (16, 8, 4) after multi-agent spa-
tial fusion, compared to the heads (8, 4, 2) used following
temporal attention.

Multi-agent Spatial Attention. Our dataset categorizes
agents as infrastructure agents, denoted by negative labels
(i.e., —1 and —2), or connected automated vehicles (CAV)



agents, denoted by positive labels (i.e., 1 and 2). To capture
the heterogeneous dependencies among these agents, we
construct a heterogeneous graph and employ distinct atten-
tion fusion parameters for each agent type. The multi-agent
spatial attention utilizes eight attention heads, and we stack
three multi-agent spatial fusion modules with the multi-agent
spatial attention to capture the inter-agent relationships.

A.3. Loss Function

This section provides the loss function employed in our
multi-task model. The initial weights of regression loss Lreg s
classification loss L, and prediction loss Lprq are set as
Wreg, Wela, Wpred = 2.0, 1.0, 2.0. For single-task learning, the
same loss function is used but weights exclusively on the
components relevant to that task.

Perception Loss. The perception task loss combines classi-
fication and regression components, designed to align pre-
dicted anchor boxes with ground truth labels. For classifi-
cation, which involves identifying objects and background
elements, we employ Focal Loss [12] to address the imbal-
ance between foreground and background samples. The
Focal Loss is expressed as:
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where p; is the predicted probability for the target anchor
box, and « and -y are balancing and focusing factors. Anchor-
wise weights are applied to further enhance the balance
between positive and negative samples.

For the regression component, we employ Smooth ¢;-
Loss to optimize the predicted bounding boxes to match
the ground truth labels in terms of position and orientation,
and a sine-cosine encoding is employed to handle rotational
ambiguities. The Smooth ¢;-Loss is defined as:

o 0.5 4,
1Al -05- 8,

if|Al < B,

. (52)
otherwise,

where A = prediction — target, and (5 is a hyper-parameter
controlling the transition between ¢ and /5 loss.
Prediction Loss. We adopt the /5-loss function to minimize
the discrepancy between the predicted trajectory and the
ground truth.
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where pf and x! represent the predicted position and target
position of the -th object at time step ¢t. Tyqiq 1 the num-
ber of valid future time steps for the agent, and Ny is the
number of detected objects.

A 4. Training Strategy

The end-to-end cooperative perception and prediction model
addresses two distinct yet interrelated tasks while integrating

information across both temporal and spatial dimensions.
Training such an end-to-end model from scratch often results
in suboptimal performance, due to the inherent complexity of
jointly optimizing these tasks and dimensions. To effectively
handle these challenges, we adopt a multi-stage training
strategy to progressively refine the model’s capabilities.

Multi-Stage Training Strategy. Initially, the end-to-end
perception and prediction model is trained in a single-agent
setting, focusing on temporal fusion without incorporating
multi-agent spatial fusion. It simplifies the optimization
process, enabling the model to learn robust temporal features
in isolation. The resulting single-agent model then serves
as a pre-trained model for subsequent multi-agent spatial
fusion training in the V2X environment. This staged training
strategy ensures that the model incrementally acquires the
ability to handle the complexities of cooperative perception
and prediction tasks.

Stage 1: Single-Agent Multi-task Learning. The single-
agent model training stage addresses the core challenge of
coordinating multi-task learning to capture complex patterns
across perception and prediction tasks. Prediction task re-
quires a comprehensive understanding of objects’ temporal
information and their intricate motion patterns, while de-
tection focuses mainly on identifying objects in the current
frame, with historical information providing supplementary
context. Training both tasks jointly without proper initial-
ization risks overfitting to simpler current-frame features,
thereby neglecting the rich but complex temporal features
essential for accurate prediction. Moreover, perception is
foundational to prediction, as detecting an object is a pre-
requisite for predicting its motion. To effectively balance
the two tasks, we adopt a task-specific training strategy. (/)
Single-Frame Perception Training: the training begins by op-
timizing the model for single-frame perception, establishing
a foundation for object detection. (2) Temporal Prediction
Training: the prediction task is introduced by freezing the
parameters of the detection backbone and training an addi-
tional temporal network and prediction head, guiding the
model to focus more on the prediction task and effectively
learn complex temporal dependencies. (3) Joint Fine-Tuning:
the entire model is unfrozen, enabling end-to-end fine-tuning
across both tasks.

Stage 2: Multi-Agent Spatiotemporal Learning. Based
on the pre-trained single-agent model, the multi-agent fu-
sion module is introduced and jointly trained with the entire
model. At this stage, the primary focus is to balance the
two tasks, ensuring that neither perception nor prediction
dominates the training process. To achieve this, we employ a
dynamic loss-weighting strategy that gradually increases the
weight assigned to the prediction loss. This approach ensures
balanced optimization, avoiding performance trade-offs be-
tween tasks and improving overall effectiveness across both
perception and prediction objectives.



Table S1. Additional benchmark results of cooperative perception and prediction models on V2XPnP Sequential (V2XPnP-Seq) Dataset

Dataset Method | E2E Map | AP@0.5(%)1 | ADE(m)| FDE(m)| MR (%)} | EPA (%)%
V2VNet* [13] v 48.6 2.10 3.75 423 25.3
V2XPnP-Seq-VC F-Cooper* [2] v v 66.0 1.35 2.56 36.1 38.7
(with V+21I at most) DiscoNet* [10] v v 66.8 1.41 2.62 344 4238
V2XPnP (Ours) v v 71.6 135 2.36 31.7 48.2
V2VNet* [13] v 33.6 1.95 3.53 442 163
V2XPnP-Seq-IC F-Cooper* [2] v v 60.2 1.21 2.32 36.3 36.3
(with 2V+I at most) DiscoNet* [10] v v 65.4 1.14 2.18 36.1 40.7
V2XPnP (Ours) v v 71.0 1.18 2.16 34.0 46.0
V2VNet* [13] v 43.1 3.10 5.55 46.8 19.4
| %
VIXPP-Seq-VaV F-Cooper* [2] v v 60.2 1.69 3.22 41.1 344
DiscoNet* [10] v v 61.2 1.66 3.13 412 33.1
V2XPnP (Ours) v v 70.5 1.78 3.28 39.9 40.6
V2VNet* [13] v 41.1 1.83 3.34 40.4 23.2
. *
V2XPnP-Seq 121 F-Cooper* [2] v v 58.6 1.34 2.58 40.0 33.6
DiscoNet* [10] v v 63.5 1.15 2.19 375 38.4
V2XPnP (Ours) v v 69.2 1.26 231 36.5 4238

Training Details. The model is trained using the Adam
optimizer [7] with an initial learning rate of 2 x 1073 and a
weight decay of 1 x 10~* with early stopping on NVIDIA
L40S GPUs. We employ 4 training stages, as detailed before,
and each training stage consists of 30 epochs with a batch
size of 2. Early stopping is employed to prevent overfitting.
We carefully tune the hyperparameters to ensure the stability
and efficiency of the training process.

B. Additional Benchmark Results

In this paper, we benchmark different spatiotemporal strate-
gies with 11 fusion models in total:

¢ No Fusion: No Fusion, No Fusion-FaF
e Early Fusion: Early Fusion
¢ Late Fusion: Late Fusion

¢ Intermediate Fusion: V2VNer [13], F-Cooper [2], Dis-
coNet [10], CoBEVFlow [14], FFNet [21], V2X-VIiT [16],
and our proposed V2XPnP.

We present additional benchmark results for V2VNer [13],
F-Cooper [2], and DiscoNet [10] across all collaboration
modes, as shown in Tab. S1. Our proposed V2XPnP consis-
tently outperforms these SOAT baselines in terms of EPA
and AP across all collaboration modes. Notably, V2VNet*
exhibits lower performance, likely due to the absence of a
map and the loss of temporal features during explicit feature
ROI matching.

C. Cooperative Temporal Perception Task

In addition to the end-to-end perception and prediction task,
the sequential nature of our V2XPnP-Sequential dataset fa-
cilitates other temporal tasks, including temporal perception

and traditional prediction tasks. In this section, we introduce
the cooperative temporal perception task and present bench-
mark results on the V2XPnP-Sequential dataset. Details on
the traditional prediction task are provided in Sec. D.

C.1. Problem Formulation

The cooperative temporal perception task is an extension of
the single-frame perception task by incorporating historical
context. Specifically, given historical 7" frames raw percep-
tion data P!, € {1,--- , N'} from all N agents within the
communication range of the ego agent, the objective is to
detect the surrounding objects in the current frame. The core
challenge lies in effectively leveraging temporal information
from T past frames to enhance detection accuracy in the
present frame.

C.2. Benchmark Methods

For benchmarking, we adapt our end-to-end model, V2XPnP,
by removing the prediction head, resulting in a model only
for temporal perception. Various V2X fusion strategies are
evaluated in this framework, as detailed in Tab. S2. More-
over, we provide another baseline FaF™, which adopts a
combination of 2D and 3D convolutions for temporal fu-
sion. FaF™* further integrates with the F-Cooper intermediate
fusion method and early fusion method for V2X fusion com-
parison. We also provide the results of the No Temp model,
which excludes temporal fusion and is evaluated using both
F-Cooper and early fusion methods. Model parameters and
experimental setups for this task are consistent with those
used for the end-to-end cooperative perception and predic-
tion task.



Table S2. Benchmark results for cooperative temporal perception. No Temp: single-frame perception, FaF*: temporal perception with
alternating 2D and 3D convolutions, V2XPnP: temporal perception with temporal attention modules.

No Fusion (AP@0.5 (%) 1) ‘ Early Fusion (AP@0.5 (%) 1) ‘ Intermediate Fusion (AP@0.5 (%) 1)

Dataset ‘
| NoTemp FaF*  V2XPnP | NoTemp FaF*  V2XPuP | NoTemp FaF* V2XPnP
V2XPnP-Seq-VC | 439 s 60.3 63.5 670 71.0 65.1 70.3 74.0
V2XPnP-Seq-IC | 464 6L1 647 | 610 655 74 | 6l 67.1 73.2
V2XPnP-Seq-V2V | 408 537 591 | 549 564 666 | 580 614 69.4
V2XPnP-Seq-121 | 510 612 647 | 634 660 M6 | 585 62.9 72.4

C.3. Benchmark Results

The results demonstrate that incorporating temporal cues
significantly improves perception performance across all
multi-agent fusion strategies. Notably, our V2XPnP model
achieves superior results compared to other baselines, due
to the careful design of temporal attention. However, we
observe a slight performance drop when the same model is
applied to the end-to-end cooperative perception and pre-
diction task, compared to its use solely for temporal per-
ception. The possible reason is the difficulty of optimizing
both tasks to achieve optimal performance. Nevertheless,
the end-to-end model still outperforms other baselines in
both perception and prediction tasks. Future research should
focus on optimizing the balance between multiple tasks to
further enhance the performance of end-to-end models.

D. Traditional Cooperative Prediction Task

D.1. Problem Formulation

V2XPnP sequential dataset also supports the traditional pre-
diction task. Compared to end-to-end models, which directly
infer future states of objects from perception data, the tradi-
tional prediction task forecasts their future trajectories from
historical trajectories. The cooperative prediction task is
formulated as follows: given the map and the historical tra-
jectories of all detected objects obtained from the ego agent
and other agents (e.g., CAVs and infrastructure units) within
the communication range of the ego agent, the objective is
to predict future trajectories of these detected objects.

D.2. Benchmark Methods

To investigate the influence of perception results on predic-
tion tasks, we provide two types of input for the prediction
models: 1) Ground-truth historical trajectories of surround-
ing objects; 2) Perception-based historical trajectories gener-
ated by the upstream perception module. The first one is the
common setting for the traditional trajectory prediction task,
assuming full availability of accurate historical trajectories
for prediction. However, it ignores real-world challenges

such as occlusions and cumulative errors introduced by sep-
arate modules. To address this limitation and enable a more
realistic evaluation, we designed the second setting, where
CAVs can only derive the historical trajectories from the
perception results, and thus the perception uncertainty can
propagate to the downstream prediction. Notably, regard-
less of the input type, the prediction model is trained using
the complete future trajectory dataset aggregated from all
agents.

In our experiment, the prediction model configuration
and experimental setup align closely with the decoupled at-
tention predictor. Following the LSTM baseline setting in
the Waymo motion dataset [5], the LSTM model also serves
as a strong baseline, which includes an LSTM encoder and
LSTM decoder. We report benchmark results under three
configurations: No Fusion, where no perception information
is fused; Ground Truth, assuming perfect historical trajec-
tories; Late Fusion, where the decoupled pipeline from the
traditional prediction task is employed.

D.3. Benchmark Results

The experimental results, summarized in Tab. S3, compare
traditional prediction under three input settings: ground
truth trajectories, perception without fusion, and percep-
tion with late fusion. The results indicate that as perception
improves—ifrom no fusion to late fusion—the prediction per-
formance correspondingly increases. When the environment
is fully observable, the task simplifies to the traditional pre-
diction setup, achieving the best overall performance for both
detection and prediction. A significant drop in performance
is observed for perception-based prediction, highlighting the
critical dependency of predictive tasks on perception accu-
racy. Moreover, the Attention predictor shows better robust-
ness compared to the LSTM baseline under noisy perception
inputs, thanks to the attention module for complex inter-
action feature capturing. We anticipate that this temporal
prediction task will inspire further exploration of perception-
based prediction approaches.



Table S3. Benchmark results for traditional prediction. No Fusion: prediction based on the no-fusion perception results. Late Fusion:
prediction based on the late fusion perception results. Ground Truth: prediction based on the ground truth trajectories with no occlusion or

perception errors.

Dataset ‘ Method ‘ Attention Predictor ‘ LSTM Predictor
\ | AP@0.5(%) 1 | ADE(m)| FDEm)| MR(%)| | AP@0.5(%)+ | ADE(m)| FDEm)| MR(%) ]
V2XPrP-Seq No Fusion 43.9 1.87 3.24 33.8 439 291 4.77 35.0
Ve Late Fusion 58.1 1.59 2.81 34.3 58.1 2.76 4.60 33.7
Ground Truth - 0.60 1.26 23.0 - 0.66 1.31 23.0
No Fusion 46.4 2.10 375 423 46.4 2.11 3.67 35.8
2XPnP-
\;c nP-Sed | | ate Fusion 559 1.39 2.44 30.1 55.9 261 4.40 327
Ground Truth - 0.63 1.35 26.2 - 0.61 1.31 25.0
No Fusion 40.8 1.99 3.38 34.0 40.8 2.98 4.82 34.4
V2XPnP-
V2Vn S| | ate Fusion 55.3 175 3.07 34.0 553 287 479 35.0
Ground Truth - 0.60 1.26 22.9 - 0.66 1.31 22.8
No Fusion 51.0 1.69 3.06 36.2 51.0 2.11 3.67 35.9
V2XPnP-
o1 nP-5ed | | ate Fusion 61.3 1.41 2.50 30.0 61.3 2.44 4.18 32.1
Ground Truth . 0.63 1.35 26.2 - 0.61 1.31 25.0

E. V2XPnP Sequential Dataset Details

E.1. Dataset Visualization

Our V2XPnP-Sequential dataset provides two sensor se-
quences (LiDAR and camera) collected in dense urban envi-
ronments, capturing diverse interactive behaviors over time.
Fig. S1 illustrates two representative interaction scenarios in
our dataset, presenting LiDAR and camera data from mul-
tiple agents at two key timestamps. The main intersection
objects pair has been annotated with red and blocks
in different agents’ views.

E.2. Data Acquisition

Sensor Specifications. The dataset was collected using four
agents - two connected automated vehicles and two smart in-
frastructure units. Each CAV is equipped with a RoboSense
128-beam LiDAR, four stereo RGB cameras with 1920 x
1080 resolution, and an integrated GPS/IMU system. The
four stereo cameras are mounted on the front, rear, left, and
right sides of the CAV, providing a complete 360-degree field
of view. Similarly, each infrastructure unit is configured with
a 128- or 64-beam LiDAR, two Axis cameras with 1920 x
1080 resolution, and a GPS module. The sensor deployment
of our data collection system is shown in Fig. 4(a).

Coordinate System. Our V2XPnP-Sequential dataset en-
compasses three coordinate systems: the LIDAR coordinate
system, the camera coordinate system, and the map coordi-
nate system. Each agent (vehicle or infrastructure) maintains
its own local LiDAR and camera coordinate systems. The
global map coordinate system serves as the reference for all
annotations and maps. The transformation from each agent’s
local LiDAR coordinate to the map coordinate in each frame
is achieved with the GPS/IMU data and the offline PCD

map. We also conduct the 3D-2D calibration for LiDAR and
camera, as shown in Fig. 4(b).

E.3. Data Annotation and Processing

Data Annotation. The 3D bounding boxes in our V2XPnP-
Sequential dataset are annotated using an open-source label-
ing tool, SUSTechPOINTS [9], by expert annotators. The
first step is annotating the bounding boxes in the point clouds
from the two CAVs and infrastructure units. Then, these
bounding boxes, annotated in different agents’ coordinate
frames, are processed through a V2X sequential pipeline
to assign consistent object IDs across agents and temporal
frames. To ensure annotation quality, each object is sub-
jected to eight rounds of review and revision. In total, ten
object categories are included in our dataset: car, pedestrian,
scooter, motorcycle, bicycle, truck, van, concrete truck, bus,
and road barrier. Each object annotation includes the center
of the bounding box (z, y, z), sizes (width, length, height),
and orientation (roll, yaw, pitch) in the global coordinates.
Notably, we follow a general object definition in annotation,
encompassing stationary objects such as parked vehicles
and barriers, which are annotated similarly to movable ob-
jects but explicitly labeled as static. This aligns with public
datasets like nuScenes [1], where static objects are tracked
while maintaining consistent IDs.

Trajectory Generation. In addition to perception data, the
dataset provides a ground-truth trajectory dataset derived
from the fused perception data of all agents, capturing the tra-
jectories of objects across all frames. This trajectory dataset
is primarily utilized in traditional prediction tasks, which as-
sume all history trajectories are observable to the ego agent.
However, this assumption ignores the fact that the trajectories
obtained from onboard sensors are incomplete due to occlu-
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Figure S1. Examples of interaction scenarios from the V2XPnP-Sequential dataset. The dataset provides multi-agent perception perspectives
and captures diverse interaction behaviors among ten object classes in dense urban traffic environments.



Table S4. Comparison between the V2XPnP-Sequential dataset and other public available driving datasets

Dataset Year | Type | V2V V2I 121 | Trajectory Map Agent Tracked 3D RGB  LiDAR Categories
Number | Objects/Scene  Boxes | Images Frames

nuScenes [ 1] 2019 | Real v 1 75.75 1.4M 1.4M 400k 23
Waymo Open [5] | 2019 | Real v 1 - 12M IM 200k 4
OPV2V [17] 2022 | Sim v 2.89 26.5 230k 44k 11k 1
V2X-Sim [11] 2022 | Sim v v v 10 - 26.6k 0 10k 1
V2XSet [16] 2022 | Sim v v v 2-7 - 230k 44k 11k 1
DAIR-V2X [19] | 2022 | Real v 2 0 464k 39k 39k 10
V2V4Real [18] 2023 | Real v v 2 - 240k 40k 20k 5
V2X-Seq [20] 2023 | Real v v 2 110 464k 71k - 10
RCooper [6] 2024 | Real v v 4 - - 50k 30k 10
V2X-Real [15] 2024 | Real v v v 4 0 1.2M 171K 33k 10
V2XPnP-Seq | 2024 | Real | v v 4 136 145M | 208k 40K 10

sion and limited perception range, and no specific datasets
are designed to support this task. To support research in
prediction with real-world sensor constraints, we provide a
trajectory retrieval module in the V2XPnP-Sequential dataset
to return observable trajectories of surrounding objects based
on their actual visibility relationships.

Map Generation. The HD map generation involves two
stages: point cloud (PCD) map generation and vector map
generation. (1) To generate the PCD map, each LiDAR frame
from the CAVs is preprocessed to remove dynamic objects,
retaining only static elements essential for mapping. Then,
a Normal Distribution Transform (NDT) scan-matching al-
gorithm is employed to compute the relative transformation
between consecutive frames, forming the basis of the Li-
DAR odometry. We also incorporate translation and heading
information obtained from the vehicle’s GPS/IMU system,
integrating them through a Kalman filter to refine the pose
estimation, mitigating the drift from the error accumulation
in LiDAR data. Finally, the LIDAR sequences are fused
to form the PCD map across all collection areas. (2) The
aggregated PCD map is imported into RoadRunner [3] to
generate vector maps. Road geometry is inferred and an-
notated based on intensity variations visualized by distinct
color mappings within RoadRunner, and all the semantic
attribution is annotated based on the collected camera data,
such as road type (e.g., driving, sidewalk, and parking) and
line type (e.g., solid and broken yellow line combination and
solid white line). Finally, the generated maps are exported
in the OpenDRIVE (Xodr) format and converted to Waymo
map format [5], ensuring compatibility with downstream
applications.

E.4. Dataset Analysis

Tab. S4 presents the comparison of the V2XPnP-Sequential
dataset with existing driving datasets. Our dataset tracks an
average of 136 objects per scene, recording high-density and

Transition

T-junction

Figure S2. Examples of intersection types in the map, including
T-junctions, roundabouts, and crossroads. The gray point clouds in
the background represent the PCD map, while lane transitions and
gradients are depicted in the map.

complex traffic scenarios. Furthermore, the dataset’s exten-
sive map and trajectory data further enhance its utility in
cooperative perception and prediction research across all col-
laboration modes. The data distribution of ten object classes
is shown in Fig. 4(d). The dataset covers 24 intersections of
varying types, including roundabouts, T-junctions, and cross-
roads, as shown in Fig. S2. Notably, many collection areas
have a significant gradient, which can facilitate the detection
and prediction research in diverse terrain conditions.

E.5. Dataset Privacy Protection

The V2XPnP-Sequential dataset is designed with stringent
privacy safeguards to ensure the anonymity of individuals
and vehicles. Trajectory data only includes object IDs and



positions, eliminating the possibility of tracking specific
entities. All perception data undergoes privacy-preserving
processing, with LiDAR annotations retaining only essential
attributes such as object ID, agent type, and bounding box
pose. Additionally, all image data has been anonymized,
with human faces and other potentially sensitive details ob-
scured or removed.
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