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6. Dataset Description

CCVID Dataset. CCVID [17] is a video-based clothes-
changing ReID benchmark containing 75 identities for
training and 151 for evaluation. There are 834 query se-
quences and 1074 gallery sequences in the test set.

MEVID Dataset. MEVID [9] is a multi-view video-based
person ReID dataset published in 2023 with 104 training
subjects and 54 testing subjects. It contains 316 query track-
lets and 1438 gallery tracklets for evaluation.

LTCC Dataset. LTCC [45] is an image-based person ReID
dataset comprising 77 training subjects and 75 testing sub-
jects. For evaluation, it includes 493 query images and
7,050 gallery images.

BRIAR Dataset. Biometric Recognition and Identifica-
tion at Altitude and Range (BRIAR) is a large whole-body
multimodal biometric dataset published by IARPA [7].
It contains videos captured from various altitudes, dis-
tances, and angles. For training, we use BRS1-4 (775 sub-
jects) as the training dataset. We use the latest Protocol
EVP5.0.0 BLENDED, which contains 1103 subjects with
10371 queries for performance evaluation.

7. Additional Implementation Details

For the CCVID, MEVID, and LTCC datasets, we use Reti-
naFace [12] with a default detection threshold of 0.9 as the
face detector to generate facial images. For BRIAR, we
employ an internal face-body joint detector to obtain both
facial and body images.

Gallery Features of Training Set. For CCVID and
MEVID, we compute the center features as the gallery fea-
tures based on the subject ID, camera ID, and clothing ID.
Therefore, each subject may have multiple gallery features.
For BRIAR, we perform subject-level center features and
derive center features from images or videos categorized
as ”Control,” as these are high-quality indoor captures. If
”Control” images or videos are unavailable for a person, we
randomly sample 100 frames from 50 videos instead.

Similarity Distances of Each Model. We follow the
original papers to measure the distances between features.
ArcFace [11], KPRPE [28], AdaFace [26], CAL [17]
AGRL [61], and CLIP3DReID [37] use cosine-similarity
to measure the distance, while BigGait [65] uses Euclidean
distance. We use Eq. 2 to transform Euclidean distance into
similarity scores.

Baseline Implementation. We implement Asym-
AO1 [22], BSSF [57], and Weighted-sum [42] based on the
paper. We train them on the training dataset with the de-
fault hyperparameters. For Weighted-sum [42], we use grid
search to determine the best modality weights combination
on the training dataset and evaluate the test set.

8. Additional Experimental Results
Our method supports both multimodal and multi-model
score-level fusion, as demonstrated in the main paper. Ad-
ditionally, it applies to unimodal score-level fusion. In the
unimodal setting, we replace QE with the average sum of
the score-fusion experts, as the input originates from a sin-
gle modality.

Tab. 7 shows the results of our performance on uni-
modal combinations on CCVID. Our method outperforms
the baseline methods in CCVID, and a similar results
to the baseline method in LTCC. We hypothesize that
the similar performance is due to CAL and AIM sharing
similar model structures and being trained on the same
dataset, leading to comparable decision outcomes. How-
ever, the FNIR@1%FPIR differs, with our method perform-
ing slightly better than the baseline.

Computation Cost of QME. The runtime cost of QME
with 1k probes and 10k gallery is 0.03s with preselected
quality weights, and 0.04s for real-time quality weight pre-
dictions on an RTX 4070 GPU.

9. Additional Ablation Experiments

Effects of Hyperparameters. We show the effect of differ-
ent batch sizes B and sequence lengths L in Tab. 8. The per-
formance remains consistent with respect to B and L, likely
due to two key factors: (1) the range of scores is relatively
narrow, which reduces sensitivity to variations in batch size
and sequence length; and (2) our model efficiently captures
the underlying patterns in the score, achieving stable perfor-
mance even with smaller sequences and batch sizes. This
stability highlights the model’s robustness across a range of
hyperparameter settings, suggesting that it effectively lever-
ages available data without requiring extensive selection of
B or L.

Effects of Ranking Threshold δ. Fig. 6 shows the pre-
dicted quality weight Wf of the selected facial images with
QEs trained with different δ. A larger δ results in a larger
Wf as we discuss in Sec. 3.1. With δ, we can control the
sensitivity of quality weights.



Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [26] ♦ 94.0 87.9 75.7 13.0± 3.5
ArcFace∗ [11] ♣ 93.2 85.3 69.1 22.5± 6.8

Min-Fusion [25]

♦ ♣

93.3 86.3 71.1 16.0± 6.6
Max-Fusion [25] 94.1 87.4 73.7 16.4± 4.7

Mean-Fusion [25] 94.1 87.1 71.8 15.6± 5.9
Z-score [54] 94.1 87.1 71.9 15.5± 5.9

Min-max [54] 94.1 87.1 71.8 15.7± 5.9
RHE [21] 94.1 87.1 71.7 15.7± 5.9

Ours 93.9 87.6 75.4 12.8± 3.1

(a) Performance on CCVID Dataset.

Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
CAL [17] ♠ 74.4 40.6 36.7 59.7± 7.3
AIM [64] ■ 74.8 40.9 37.0 66.2± 7.5

Min-Fusion [25]

♠ ■

74.4 41.9 37.7 59.5± 11.4
Max-Fusion [25] 73.6 41.5 37.5 60.7± 6.8

Mean-Fusion [25] 75.3 42.5 38.1 58.7± 9.9
Z-score [54] 75.3 42.5 38.1 58.9± 9.9

Min-max [54] 75.3 42.5 38.1 58.8± 10.0
RHE [21] 75.1 42.5 38.1 59.0± 9.9

Ours 75.3 42.5 38.1 58.6± 9.6

(b) Performance on LTCC Dataset.

Table 7. Performance on CCVID and LTCC. [Keys: Best and
second best performance; Comb.: model combination; ∗: zero-
shot performance; ♦: AdaFace for face modality; ♣: ArcFace
for face modality; ♠: CAL of body modality; ■: AIM for body
modality; TAR: TAR@1%FAR; FNIR: FNIR@1%FPIR.]

B L Rank1 mAP TAR@1%FAR FNIR@1%FPIR

8 1 92.6 91.6 74.7 13.3± 1.1
8 8 92.6 91.6 75.0 13.3± 1.2
8 16 92.3 91.6 75.0 13.3± 1.2
16 1 92.6 91.6 74.2 13.4± 1.0
16 8 92.6 91.6 74.5 13.4± 1.0
16 16 92.6 91.6 74.6 13.4± 1.0

Table 8. Effects of hyperparameters B and L on CCVID.
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Figure 6. Effects of QEs with different δ in MEVID.

Effects of Quality Assessment Methods. We analyze the
effects of using the norm of AdaFace [26] as quality weights
for the input of Nr. Since the face feature norm ranges from

Method Rank1↑ mAP↑ TAR↑ FNIR↓
Ours 92.6 91.6 75.0 13.3± 1.2

Ours (Norm) 93.9 89.0 75.6 14.0± 2.9

(a) Performance on CCVID Dataset.

Method Rank1↑ mAP↑ TAR↑ FNIR↓
Ours 55.7 28.2 32.9 64.6± 8.2

Ours (Norm) 55.4 27.9 32.1 63.8± 8.2

(b) Performance on MEVID Dataset.

Table 9. Our performance on CCVID and MEVID datasets
in the general setting. Ours (Norm): the norm of AdaFace
features as the quality weights. [Keys: TAR=TAR@1%FAR;
FNIR=FNIR@1%FPIR.]

δ m
CCVID LTCC

Rank1 mAP Rank1 mAP

3 3 94.1± 0.08 90.4± 0.45 74.2± 0.43 40.0± 0.6
20 3 94.2± 0.10 91.2± 0.37 75.1± 0.20 41.8± 0.60
3 1 94.0± 0.05 90.9± 0.42 75.0± 0.34 42.0± 0.48

Table 10. Effects of δ, m on CCVID and LTCC.

[0,+∞], we apply a transformation: 1−1/Nf where Nf is
the face feature norm. Our result using QE is slightly better
than using Nf . Moreover, compared to Nf , our QE offers
greater flexibility by adjusting the ranking threshold (details
in Sec. 9), and is applicable to other modalities. Further ex-
ploration of alternative quality assessment methods is en-
couraged in future work.

Effects of QE for other modalities. We visualize the qual-
ity weight distribution of CCVID and MEVID in Fig. 7, and
the performance of QME using the QE of CAL as the input
to Nr in Tab. 2 in the main paper (denote as CAL-QE).

Statistical Test. We provide statistical tests with mean and
standard deviation in the last three rows of Tab. 10 using
seeds 42, 333, and 2025. Our method demonstrates consis-
tent performance across all trials.

Effects of δ, m. We provide additional ablation studies on
ranking threshold δ and margin m in Tab. 10, rows 2 and 3.
Our method is robust to hyperparameter settings. Z is set to
2 since the quality weight is a scalar in [0,1].

10. Facial Data Cleaning for MEVID

We illustrate the extra facial data cleaning process that ap-
plies in MEVID. We observe that there are many imposter
subjects or false positive samples in each subject due to
detection errors, as shown in imposters in Fig. 8. We use
AdaFace [26] to compute feature vectors for all images in
the training set. After that, we calculate the score distri-
bution among all images belonging to the same subject.



Figure 7. The distribution of CAL quality weights for the CCVID
and MEVID datasets, illustrated with examples showcasing a
range of quality weights.

Imposters (Subject 0297)Genuine (Subject 0297)

Imposters (Subject 0278)Genuine (Subject 0278)

Figure 8. Visualization of imposters’ facial images in MEVID.

Assuming we have a chunk size of 100 images for a sub-
ject, we can get a self-similarity score matrix with dimen-
sion R100×100. We filter out the scores that are not in
[µ − α ∗ σ, µ + α ∗ σ], where µ and σ are the mean and
standard deviation of self-similarity score matrix, α is a hy-
perparameter to control the sensibility of the threshold. We
set up α = 0.7 in our case. We set up the chunk size as
3000 and apply data cleaning for both the training and test-
ing sets. Fig. 8 visualizes the filtered facial images (im-
posters) of selected subjects in the MEVID. Note that there
are still some false positive samples remaining in the test
set, and all baseline methods use the same dataset for fair
comparison.

11. Limitation
While our method greatly enhances whole-body biometric
performance, its impact on other domains remains unex-

plored. Future work could extend its application to broader
tasks. Moreover, some other router functions or improving
the number of score-fusion experts for MoE can be further
explored to understand the effects of expert learning. Future
research could investigate its application to broader tasks,
extending its effectiveness across diverse domains.

12. Potential Societal Impacts
Our paper leverages multiple public biometric datasets for
research purposes, with a focus on the similarity score do-
main, which is less directly tied to sensitive biometric data.
As biometric recognition tasks grow increasingly complex,
integrating multiple models has become a key trend to en-
hance system performance. It is essential to ensure that the
use of biometric datasets and recognition systems adheres
to ethical standards and complies with privacy regulations.


