
Accelerating Diffusion Sampling via Exploiting Local Transition Coherence

Overview
The supplementary materials consist of three sections:
• The first section provides supplementary ablation

studies mentioned in ?? (See Appendix A).
• The second section is the Mathematical Derivation of

LTC-ACCEL (see Appendix B). The overall mathemati-
cal derivation consists of two parts:
– We present the derivation process of wg in detail (see

Appendix B.1).
– We introduce the derivation process for the error upper

bound inequality in detail(see Appendix B.2).
– We provide additional experimental evidence demon-

strating the convergence of wg and show that this con-
vergence holds across different schedulers (see Ap-
pendix B.3).

• The third section details the experimental setup for
the figures (see Appendix C).

• The final section focuses on providing detailed experi-
mental settings (see Appendix D), including three parts:
– We provide the details of the acceleration interval and

the conditions for setting the approximated steps (see
Appendix D.1).

– We specify which experiments utilized the optional al-
gorithm and which did not (see Appendix D.2).

– We present intuitive experimental visual results to
demonstrate the effectiveness of our LTC-ACCEL (see
Appendix E).

A. Ablation Studies
In this section, we perform ablation studies to further assess
and validate the effectiveness of our method.
Directly Skipping Steps: We compare our approach with
the Skipping Steps strategy within the same acceleration
framework. Tab. 6 shows that our method improves com-
putational efficiency over the original approach while pre-
serving generation quality better than the Skipping Steps.

B. Mathematical Derivation
B.1. Derivation of wg

To derive the wg , we have:

wg = argmin
(
∥∆xt+1,t − wgγ∆xt+2,t+1∥2

)
. (9)

Model Scheduler Skipping Steps LTC-ACCEL

Steps ImageReward↑ Steps ImageReward↑

SD v2
DDIM 7 0.0537 7 0.1472
DDIM 10 0.2003 10 0.2442
DDIM 13 0.2812 13 0.3129

SD v2
EDM 7 0.0158 7 0.2018
EDM 10 0.2003 10 0.3171
EDM 13 0.2582 13 0.3335

Table 6. Ablation study comparing LTC-ACCEL with the Skip-
ping Steps method under the same acceleration framework. The
results show that LTC-ACCEL outperforms Skipping Steps, indi-
cating the effectiveness of LTC-ACCEL. The results demonstrate
that our method consistently outperforms the Skipping Steps
strategy in all scenarios.

We expand the objective function in terms of the inner prod-
uct:

∥∆xt+1,t − wgγ∆xt+2,t+1∥2

= ∥∆xt+1,t∥2 − 2wgγ (∆xt+1,t ·∆xt+2,t+1)

+ w2
gγ

2 ∥∆xt+2,t+1∥2 .

(10)

Taking the derivative of this expression with respect to
wg and setting it equal to zero yields:

∂

∂wg

[
∥∆xt+1,t − wgγ∆xt+2,t+1∥2

]
= −2γ(∆xt+1,t ·∆xt+2,t+1

)
+ 2wgγ

2 ∥∆xt+2,t+1∥2

= 0.

(11)

Rearranging this equation, we obtain:

wgγ ∥∆xt+2,t+1∥2 = ∆xt+1,t ·∆xt+2,t+1. (12)

Thus, the final expression for wg is given by:

wg =
∆xt+1,t ·∆xt+2,t+1

γ ∥∆xt+2,t+1∥2
. (13)
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(a) DDIM 20 wg through all steps.
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(b) DDIM 20 wg through selected steps
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(c) DPM 20 wg through all steps.
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(d) DPM 20 wg through selected steps.

Figure 6. Quantitative results of the variation of wg . We present our results on DDIM and DPM-Solver++ in 20 steps, with 5 different
prompts and latents. Fig. 6a and Fig. 6c demonstrate the original results without acceleration, where wg achieves convergence after about
12 steps. Fig. 6b and Fig. 6d show the results within the acceleration inverval [12, 20], where different weights are almost the same,
indicating strong feature of convergence.

B.2. Derivation of the Error Upper Bound Inequal-
ity

To derive the inequality, we have:

θ = arccos

(
∆xt+1,t ·∆xt+2,t+1

∥∆xt+1,t∥2∥∆xt+2,t+1∥2

)
< τ, (14)

which is equivalent to:

∆xt+1,t ·∆xt+2,t+1

∥∆xt+1,t∥2∥∆xt+2,t+1∥2
> cos τ. (15)

Substituting this back into Eq. (9), we get:

∥∆xt+1,t∥2 −
(∆xt+1,t ·∆xt+2,t+1)

2

∥∆xt+2,t+1∥2
.

(16)

Squaring both sides of the inequality and substituting the

expressions, we can derive:∥∥∆xt+1,t − wg γ∆xt+2,t+1

∥∥2
≤

∥∥∆xt+1,t

∥∥2(1− cos2τ)

=
∥∥∆xt+1,t

∥∥2sin2τ

≤
∥∥∆xt+1,t

∥∥2τ2.
(17)

B.3. Experimental Verification of wg Convergence
We select DPM-Solver++ [5]and DDIM [8] as representa-
tive schedulers for our experiments on Stable Diffusion v2.
Given that wg tends to exhibit stronger convergence with
more steps, we choose 20 steps as a representative case.
Fig. 6a and Fig. 6c illustrate the convergence behavior of
the original wg , while Fig. 6b and Fig. 6d demonstrate that
the wg values obtained through our algorithm also exhibit
convergence.

C. Experimental Setup for Figures
In this section, we provide the experimental settings for all
figures presented in the main text.



• Figure 1
– The base model is Stable Diffusion v3.5 [1], and the

corresponding scheduler is DPM-Solver++.
– We select the acceleration condition as t mod r = r−1

and t > 4, where the period parameter r is set as r = 2.
• Figure 2

– (a) The base model is Stable Diffusion v2 [7], and the
baseline is DeepCache [6] with 50 steps where N = 2.
We select the acceleration condition as t mod r = r−3
and t > 12, where the period parameter r is set as
r = 3 only in experiments about DeepCache.

– (b) The baseline model is Animated-Diff [2]
model, and the Distillation model is Animated-
Diff-Lightning [4] with 4 steps under the scheduler
EDM [3]. We select the acceleration condition as
t mod r = r − 1 and t > 2, where the period
parameter r is set as r = 2.

• Figure 3
– (a) The base model is Stable Diffusion v2, and the cor-

responding scheduler is DDIM. The result is obtained
at 40 steps.

– (b) We select the acceleration condition as t mod r =
r − 1 and t > 12 based on the original setting, where
the period parameter r is set as r = 2.

– (c) The base model is Stable Diffusion v2, and the cor-
responding scheduler is DDIM. The weight values are
obtained at 40 steps. Note that the acceleration con-
dition here is (t > 1), and the approximated value is
not assigned to x to prevent accumulated errors from
deviating the results from the original process.

• Figure 4
– The base model is Stable Diffusion v2, and the cor-

responding scheduler is DDIM. The result is obtained
at 40 steps. We select the acceleration condition as
t mod r = r − 1 and t > 12 based on the original
setting, where the period parameter r is set as r = 2.
We give trials to a series of bias from 0.0125 to 0.05.

• Figure 5
– The detailed acceleration settings are available in

Tab. 7.

D. Experimental Details
In this section, we give a further insight into relevant details
of the experiments mentioned in the paper, including the
settings of acceleration intervals, the optional wg algorithm.

D.1. Acceleration Interval
As our method mentioned, we select certain consecutive
timesteps as the acceleration interval if the angles formed
between their transition operators are less than a threshold
τ . Typically, we prefer to set τ = 0.1. However, the thresh-
old and specific acceleration interval may vary slightly by
manual adjustment according to the actual angle plot, in

case of a few abnormal angle data samples.
After choosing the acceleration interval, we need to set

the period of acceleration, which is defined as the param-
eter r in the paper. In most cases, the acceleration is
applied at timestep xt within the acceleration interval if
t mod r = r − 1. Generally, r = 2 is applicable for al-
most all the cases without any other modification manu-
ally, which demonstrates the versatility of our method. The
acceleration condition may be adjusted if further improve-
ments in generation quality are required.

Text-to-image Synthesis Task
Tab. 7 presents the detailed results of all the experiments
we conduct on Stable Diffusion v2 and v3.5-mid in the text-
to-image synthesis task, with acceleration settings attached.
And Tab. 8 and Tab. 9 show the acceleration settings of each
group. Notably, r = 2 is across all these experiments, ex-
cept for the case that r = 3 in the experiment with Deep-
Cache in Tab. 8.

Text-to-video Synthesis Task
We evaluate video quality from two perspectives: Frame
Consistency and Textual Faithfulness. For Frame Consis-
tency, we compute CLIP image embeddings for every frame
of the output video and report the average cosine similarity
among all frame pairs. For Textual Faithfulness, we com-
pute the average ImageReward score between each output
video frame and its corresponding edited prompt. From the
results, we achieve a 1.54× speedup with almost no impact
on video generation quality.

Tab. 10 gives a specific view of the acceleration settings
for the experiments we conduct on video models in the text-
to-video synthesis task. In addition, Tab. 11 presents the
acceleration settings in distillation as well. All the experi-
ments keep consistent in r = 2.

Ablation Study
The acceleration framework in the ablation experiment with
”Skipping Steps” strategy is shown in Tab. 12. In addition,
we conduct further ablation studies on Align Your Steps and
present results together with acceleration settings in Tab. 13.

D.2. Optional wg Algorithm
The optional wg algorithm is designed to further minimize
the difference between the wg we obtain and the optimal
one, since in each iteration we just compute an approximate
solution. However, most of the experiments demonstrate
that even without the optional wg algorithm our method
can achieve promising effects on various models and sched-
ulers, with little bias from the original process. Therefore,
we apply the optional algorithm only to DDIM.

D.3. Hyperparameters
In our method, we emphasize that no manual tuning is re-
quired during deployment beyond choosing the accelera-



Original LTC-ACCEL

Metric Model Scheduler Inference Metric Inference Metric Acceleration SpeedupStep Value Step Value Condition

ImageReward SD v2 DDIM 10 -0.5070 6 0.0261 t mod r = r − 1 and t > 2 1.67×
ImageReward SD v2 DDIM 20 0.3185 12 0.3117 t mod r = r − 1 and t > 4 1.67×
ImageReward SD v2 DDIM 30 0.3578 20 0.3541 t mod r = r − 1 and t > 10 1.50×
ImageReward SD v2 DDIM 40 0.3967 26 0.4009 t mod r = r − 1 and t > 12 1.54×
ImageReward SD v2 DDIM 50 0.4209 30 0.4183 t mod r = r − 1 and t > 10 1.67×
ImageReward SD v2 DDIM 100 0.4266 60 0.4316 t mod r = r − 1 and t > 20 1.67×
ImageReward SD v3.5 DPM-Solver++ 12 0.4795 8 0.4796 t mod r = r − 1 and t > 4 1.50×
ImageReward SD v3.5 DPM-Solver++ 24 0.9249 16 0.9287 t mod r = r − 1 and t > 8 1.50×
ImageReward SD v3.5 DPM-Solver++ 36 1.0254 24 1.0313 t mod r = r − 1 and t > 12 1.50×
ImageReward SD v3.5 DPM-Solver++ 48 1.0990 32 1.1016 t mod r = r − 1 and t > 16 1.50×
ImageReward SD v3.5 DPM-Solver++ 60 1.0755 40 1.0785 t mod r = r − 1 and t > 20 1.50×
ImageReward SD v3.5 EDM 20 0.9351 13 0.9089 t mod r = r − 1 and t > 6 1.53×
ImageReward SD v3.5 EDM 30 1.0166 19 1.0040 t mod r = r − 1 and t > 8 1.58×
ImageReward SD v3.5 EDM 40 1.0578 26 1.0497 t mod r = r − 1 and 11 ≤ t ≤ 37 1.54×
ImageReward SD v3.5 EDM 50 1.0725 30 1.0623 t mod r = r − 1 and t > 10 1.67×
ImageReward SD v3.5 EDM 60 1.0766 39 1.0691 t mod r = r − 1 and 15 ≤ t ≤ 55 1.54×

PickScore SD v2 DDIM 10 20.08 6 21.09 t mod r = r − 1 and t > 2 1.67×
PickScore SD v2 DDIM 20 21.53 12 21.52 t mod r = r − 1 and t > 4 1.67×
PickScore SD v2 DDIM 30 21.60 20 21.59 t mod r = r − 1 and t > 10 1.50×
PickScore SD v2 DDIM 40 21.66 26 21.65 t mod r = r − 1 and t > 12 1.54×
PickScore SD v2 DDIM 50 21.69 30 21.69 t mod r = r − 1 and t > 10 1.67×
PickScore SD v2 DDIM 100 21.73 60 21.73 t mod r = r − 1 and t > 20 1.67×
PickScore SD v3.5 DPM-Solver++ 12 21.23 8 21.21 t mod r = r − 1 and t > 4 1.50×
PickScore SD v3.5 DPM-Solver++ 24 21.93 16 21.95 t mod r = r − 1 and t > 8 1.50×
PickScore SD v3.5 DPM-Solver++ 36 22.19 24 22.21 t mod r = r − 1 and t > 12 1.50×
PickScore SD v3.5 DPM-Solver++ 48 22.26 32 22.28 t mod r = r − 1 and t > 16 1.50×
PickScore SD v3.5 DPM-Solver++ 60 22.33 40 22.35 t mod r = r − 1 and t > 20 1.50×
PickScore SD v3.5 EDM 20 22.28 13 22.23 t mod r = r − 1 and t > 6 1.53×
PickScore SD v3.5 EDM 30 22.43 19 22.28 t mod r = r − 1 and t > 8 1.58×
PickScore SD v3.5 EDM 40 22.51 26 22.49 t mod r = r − 1 and 11 ≤ t ≤ 37 1.54×
PickScore SD v3.5 EDM 50 22.53 30 22.52 t mod r = r − 1 and t > 10 1.67×
PickScore SD v3.5 EDM 60 22.53 39 22.52 t mod r = r − 1 and 15 ≤ t ≤ 55 1.54×

Table 7. Text-to-image Synthesis on Stable Diffusion.

DeepCache LTC-ACCEL

Model Inference Time Image Inference Time Image Acceleration SpeedupStep Reward Step Reward Condition

SD v2

10 264 -0.2246 8 208 -0.2739 t mod r = r − 1 and t > 4 1.25×
20 524 0.2445 16 419 0.2456 t mod r = r − 1 and t > 8 1.25×
50 1411 0.4039 38 1038 0.4096 t mod r = r − 3 and t > 12 1.41×

100 3014 0.4242 75 2171 0.4246 t mod r = r − 3 and 24 < t ≤ 90 1.38×

Table 8. Quantitative results of text-to-image, combing our method with Deepcache, where the parameter N mentioned in DeepCache
remains N = 2.

tion interval—all other key hyperparameters are either au-
tomatically computed or empirically robust across different
prompts and settings.

1. wg : The main hyperparameter wg is automatically com-
puted via ?? and consistently converges within the ac-
celeration interval (????), indicating prompt-agnostic
behavior. In all experiments, wg is computed once
from a single prompt and reused. Its overhead is com-
parable to a single forward pass. The generality

of wg is supported by strong results across diverse
prompts (?? and Fig. 6).

2. ϕ(t) : ϕ(t) defines the relative importance of each
timestep and serves as a smooth baseline for comput-
ing γ. Though its effect is normalized out in wg · γ,
it stabilizes the solution of wg by smoothing temporal
weights—a design inspired by ODE solvers. This al-
lows wg to adapt to model dynamics while keeping ϕ
fixed and general. Ablations in Fig. 7d show consistent



Original Ays LTC-ACCEL

Model Scheduler Inference Image Inference Image Inference Image Acceleration SpeedupStep Reward Step Reward Step Reward Condition

SD v1.5 DPM-Solver++ 10 0.1111 10 0.1332 8 0.1309 t mod r = r − 1 and t > 6 1.25×

Table 9. Quantitative results of text-to-image, combing our method with Align Your Steps.

Original LTC-ACCEL

Model Inference Image Frame Inference Image Frame Acceleration SpeedupStep Reward Consistency Step Reward Consistency Condition

epiCRealism 10 0.2439 0.9713 7 0.2426 0.9700 t mod r = r − 1 and t > 4 1.43×
epiCRealism 20 0.3050 0.9729 13 0.2939 0.9732 t mod r = r − 1 and t > 6 1.54×
epiCRealism 30 0.3662 0.9676 19 0.3465 0.9681 t mod r = r − 1 and t > 8 1.58×

realistic-vision 10 0.1142 0.9636 7 0.1135 0.9633 t mod r = r − 1 and t > 4 1.43×
realistic-vision 20 0.2646 0.9676 13 0.2683 0.9672 t mod r = r − 1 and t > 6 1.54×
realistic-vision 30 0.4046 0.9655 19 0.3913 0.9669 t mod r = r − 1 and t > 8 1.58×
CogVideoX-2B 20 -0.1441 0.9442 14 -0.1673 0.9361 t mod r = r − 1 and t > 8 1.43×
CogVideoX-2B 30 0.2302 0.9464 19 0.2320 0.9435 t mod r = r − 1 and t > 8 1.58×
CogVideoX-2B 40 0.3918 0.9514 26 0.3775 0.9511 t mod r = r − 1 and t > 12 1.54×

Table 10. Quantitative results of text-to-video. We present our results on Animated-Diff, and CogVideoX by measuring the Textual
Faithfulness and Frame Consistency using 100 prompt-video pairs.

performance across different ϕ, confirming robustness.

3. r : We fix r = 2 for all settings, except when using
caching, where it adapts to reuse intermediate results.

4. τ : τ sets the acceleration interval. Larger values de-
grade quality via error accumulation. We suggest τ <
0.15 for speed–fidelity trade-off.

5. Bias : The bias promotes global refinement over local
updates, as discussed in ??, with supporting results in
??. further shows this design yields clear quality gains
over greedy baselines.”

To further validate the generalizability of these hyperpa-
rameters, we evaluate τ , bias, and ϕ as shown in Figures 7c
and 7d. Results present the followings: (1) Large τ de-
grades quality due to unstable denoising; (2) Bias enhances
global performance; (3) ϕ’s choices minimally affect out-
comes, indicating robustness.

D.4. Additional Video Experiments
Beyond the text-to-video experiments presented in the pa-
per, we have conducted additional experiments using novel
datasets and evaluation metrics. Specifically, we integrate
vBench, a perceptual benchmark into our pipeline. To better
reflect real-world scenarios, we use WebVid-style prompts,
suited for video generation. We assess video quality via
imaging quality and temporal flickering, as shown in Fig-
ure 7a. Despite substantial acceleration, flickering increases
only marginally (≈ 0.02), confirming that perceptual tem-
poral consistency is largely preserved.

E. Visual Results from Selected Experiments

To provide a more intuitive presentation of our experimen-
tal results, we have selected representative images from our
experiments for visualization. For video experiments, only
the first frame is extracted for comparison. The experimen-
tal settings correspond to the displayed images as follows.

• Fig. 8 Results obtained using DDIM sampling on Stable
Diffusion v2.

• Fig. 9 Results obtained using EDM sampling on Stable
Diffusion v3.5.

• Fig. 10 Results obtained using DPMsolver++ sampling
on Stable Diffusion v3.5.

• Fig. 11 Based on the DeepCache model, the results ob-
tained using DDIM sampling on Stable Diffusion v2.

• Fig. 12 Based on the Align Your Steps method, we ob-
tained sampling results using DPM-Solver++ on Stable
Diffusion v1.5.

• Fig. 13 Results obtained using DDIM sampling on
CogVideoX-2B.

• Fig. 14 Using EDM sampling on the Animated-Diff
model based on epiCRealism.

• Fig. 15 Using EDM sampling on the Animated-Diff
model based on realistic-vision.

• Fig. 16 Using EDM sampling on the Animated-Diff-
lightning model based on epiCRealism.

• Fig. 17 Using EDM sampling on the Animated-Diff-
lightning model based on realistic-vision.



Original Original LTC-ACCEL

Model Inference Image Frame Inference Image Frame Inference Image Frame Acceleration SpeedupStep Reward Consistency Step Reward Consistency Step Reward Consistency Condition

epiCRealism 4 0.3662 0.9685 3 0.2913 0.9673 3 0.3550 0.9645 t mod r = r − 1 and t > 2 1.33×
epiCRealism 8 0.3371 0.9697 5 0.2978 0.9690 5 0.3493 0.9654 t mod r = r − 1 and t > 2 1.60×

realistic-vision 4 0.2412 0.9639 3 0.1249 0.9641 3 0.2156 0.9618 t mod r = r − 1 and t > 2 1.33×
realistic-vision 8 0.2469 0.9623 5 -0.0095 0.9635 5 0.2237 0.9598 t mod r = r − 1 and t > 2 1.60×

Table 11. Quantitative results of text-to-video, combing our method with Animated-Diff-Lightning (the distilled version of Animated-
Diff).

Model Scheduler Skipping Steps LTC-ACCEL Acceleration Condition
Steps ImageReward↑ Steps ImageReward↑

SD v2
DDIM 7 0.0537 7 0.1472 t mod r = r − 1 and t > 4
DDIM 10 0.2003 10 0.2442 t mod r = r − 1 and t > 6
DDIM 13 0.2812 13 0.3129 t mod r = r − 1 and t > 6

SD v2
EDM 7 0.0158 7 0.2018 t mod r = r − 1 and t > 4
EDM 10 0.2003 10 0.3171 t mod r = r − 1 and t > 6
EDM 13 0.2582 13 0.3335 t mod r = r − 1 and t > 6

Table 12. Ablation study comparing LTC-ACCEL with the Skipping Steps method, where Skipping Steps maintains the same acceleration
positions as ours. r = 2 is consistent in the ablation study.
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Ays + Skip-steps Ays + LTC-ACCEL

Model Scheduler Inference Image Inference Image Acceleration
Step Reward Step Reward Condition

SD v1.5 DPM-Solver++ 8 0.0820 8 0.1309 t mod r = r − 1 and t > 6

Table 13. Ablation study comparing our method with Align Your Steps (Ays), where Ays maintains the same acceleration positions as
ours. r = 2 is consistent in the ablation study.
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Figure 7. Comparative experiments on video generations, compatibility with AYS, and ablation studies on interval selection, ϕ and bias.



Figure 8. Results obtained using DDIM sampling on Stable Diffusion v2 are shown. In each row, the first and third images correspond to
the 50-step outputs from the original process, while the remaining two images display the LTC-ACCEL results achieved in just 30 steps.



Figure 9. Results obtained using EDM sampling on Stable Diffusion v3.5 are shown. In each row, the first and third images correspond to
the 60-step outputs from the original process, while the remaining two images display the LTC-ACCEL results achieved in just 39 steps.



Figure 10. Results obtained using DPMsolver++ sampling on Stable Diffusion v3.5 are shown. In each row, the first and third images
correspond to the 60-step outputs from the original process, while the remaining two images display the LTC-ACCEL results achieved in

40 steps.



Figure 11. Based on the DeepCache model, the results obtained using DDIM sampling on Stable Diffusion v2 are presented. In each row,
the first and third images depict the DeepCache results after 50 iterations, while the remaining two images display the outputs from

LTC-ACCEL combined with DeepCache after 38 iterations.



Figure 12. Based on the Align Your Steps method, we obtained sampling results using DPM-Solver++ on Stable Diffusion v1.5. In each
row, the first and third images represent the outputs after 10 iterations using only the “Align Your Steps” approach, while the second and

fourth images show the results achieved by combining LTC-ACCEL with align your step for 8 iterations.



Figure 13. Results obtained using DDIM sampling on CogVideoX-2B, with only the first frame of each video selected. In each row, the
first and third images represent the outputs after 40 iterations of the original process, while the remaining two images display the

LTC-ACCEL results achieved in 26 iterations.
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Figure 14. Using EDM sampling on the Animated-Diff model based on epiCRealism, we obtained results where only the first frame of
each video was selected. In each row, the first and third images correspond to the outputs after 30 iterations of the original process, while

the remaining two images show the LTC-ACCEL results achieved in 19 iterations.
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Figure 15. Using EDM sampling on the Animated-Diff model based on realistic-vision, we obtained results where only the first frame of
each video was selected. In each row, the first and third images correspond to the outputs after 30 iterations of the original process, while

the remaining two images show the LTC-ACCEL results achieved in 19 iterations.
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Figure 16. Using EDM sampling on the Animated-Diff-Lightning model based on epiCRealism, we obtained results where only the first
frame of each video was selected. In each row, the first and third images correspond to the outputs after 4 iterations of the original

process, while the remaining two images show the LTC-ACCEL results achieved in 3 iterations.
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Figure 17. Using EDM sampling on the Animated-Diff-Lightning model based on realistic-vision, we obtained results where only the
first frame of each video was selected. In each row, the first and third images correspond to the outputs after 4 iterations of the original

process, while the remaining two images show the LTC-ACCEL results achieved in 3 iterations.
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