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In the supplementary materials, we first present addi-
tional experimental results for a comprehensive comparison
in Section A. Then, we provide more analysis for our im-
plicit modules in Section B.

A. Additional Experimental Results

A.1. Results for perceptual quality
To further evaluate the perceptual quality of the BVSR mod-
els, we apply three representative perceptual quality met-
rics, i.e., LPIPS [17], FID [4], and DISTS [5], to assess four
competitive BVSR methods (DBVSR [11], BSVSR [12],
Self-BVSR [1], FMA-Net [15]) and our BVSR-IK model
on two degradation scenarios (Gaussian blur and realistic
motion blur). Their experimental results are provided in Ta-
ble 1. It can be found from Table 1 that our BVSR-IK model
offers best perceptual quality results in most cases and of-
fers second-best results in a few cases. In particular, our
BVSR-IK model offers the best perceptual quality results
in terms of LPIPS on three testing datasets for two degrada-
tion scenarios. These results demonstrate that our BVSR-IK
model can achieve a state-of-the-art perceptual quality.

A.2. Results for real-world scenario
It is noted that different environmental factors like ob-
ject/camera motions, depth of field variation, and camera
defocusing can potentially result in spatially varying degra-
dations in the real world [6]. Several real-world super-
resolution (SR)/video super-resolution (VSR) datasets have
been proposed to simulate these degradations, such as Re-
alSR [2], VideoLQ [3], and RealVSR [13].

We provide the results of our BVSR-IK model for real-
world complex blur kernels scenario. To evaluate our
proposed implicit kernels in real-world VSR methods, we
choose a recent state-of-the-art real-world VSR method,
i.e., Realviformer [18], as a basic compared method. We
first replace the channel attention fusion (CAF) module of
Realviformer [18] with our implicit kernel dictionary to
construct the Realviformer-IK model, evaluating our im-
plicit kernels in existing real-world VSR method. Secondly,
we trained our full BVSR-IK model for the real-world sce-
nario to evaluate real-world VSR performance.

We evaluate three models, i.e., original Realviformer,
Realviformer-IK and our full BVSR-IK models, in terms
of NRQM [8], ILNIQE [16], BRISQUE [9] on on two real-
world VSR datasets, VideoLQ [3] and RealVSR [13]. The
corresponding results are reported in Table 2. We can also
observe from Table 2 that evident gains achieved by two
our proposed models over Realviformer. Additionally, our
BVSR-IK model achieves more significant real-world VSR
performance gain.

B. More Analysis
B.1. Relevance of implicit modules
To showcase the relevance of each implicit module, we pro-
vide visualization examples of implicit kernel atoms and co-
efficient weights µ and ω of our Implicit Spatial Correction
(ISC) and Implicit Temporal Alignment (ITA) modules in
Figure 1. Specifically, kernels with three different scales,
i.e., 5×5, 9×9, and 13×13, were first visualized in Fig-
ure 1 (left). It can be found from Figure 1 (left) that the
kernel atoms within the same scale contain diverse patterns,
with similar shapes across scales, which shows that implicit
kernel atoms are associated with strong isotropy. Addition-
ally, we provide three pairs of coefficient weights of our ISC
and ITA (forward propagation) modules, i.e., µ1, µ3, µ5 and
ω1, ω3, ω5 in Figure 1 (right). It illustrates the adaptation
to scene depth (µ) and image (ω). These results effectively
present the advantage of our implicit modules.
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Table 1. The results in terms of LPIPS, FID, and DISTS on three testing datasets.

Scenarios Methods
REDS4 [10] Vid4 [7] UDM10 [14]

LPIPS↓ / FID↓ / DISTS↓ LPIPS↓ / FID↓ / DISTS↓ LPIPS↓ / FID↓ / DISTS↓

Gaussian
Blur

DBVSR [11] 0.2665 / 16.34 / 0.1296 0.3285 / 76.64 / 0.1877 0.1624 / 28.67 / 0.1327
BSVSR [12] 0.2692 / 23.13 / 0.1200 0.3142 / 74.95 / 0.1821 0.1763 / 25.42 / 0.1295
Self-BVSR [1] 0.2679 / 16.72 / 0.1279 0.3099 / 82.43 / 0.1743 0.1187 / 23.34 / 0.0893
FMA-Net [15] 0.2527 / 15.49 / 0.1122 0.3326 / 69.40 / 0.1718 0.1958 / 29.47 / 0.1106
BVSR-IK (ours) 0.2402 / 12.09 / 0.1238 0.2976 / 73.14 / 0.1682 0.1164 / 19.87 / 0.0812

Realistic
Motion

Blur

DBVSR [11] 0.3509 / 22.31 / 0.1692 0.3254 / 72.98 / 0.1895 0.1508 / 20.76 / 0.0975
BSVSR [12] 0.3113 / 20.12 / 0.1441 0.3279 / 78.31 / 0.1772 0.1442 / 19.63 / 0.0892
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FMA-Net [15] 0.2726 / 16.90 / 0.1290 0.3052 / 61.04 / 0.1490 0.1266 / 18.93 / 0.0747
BVSR-IK (ours) 0.2466 / 12.61 / 0.1266 0.2884 / 66.52 / 0.1683 0.1127 / 18.35 / 0.0811

Table 2. The results in terms of NRQM, ILNIQE, and BRISQUE on two testing datasets for real-world video super-resolution.

Datasets
Realviformer [18] Realviformer-IK BVSR-IK (ours)

NRQM↑/ILNIQE↓/BRISQUE↓ NRQM↑/ILNIQE↓/BRISQUE↓ NRQM↑/ILNIQE↓/BRISQUE↓

VideoLQ [3] 6.338 / 25.94 / 25.21 6.368 / 25.76 / 24.36 6.417 / 25.49 / 24.23

RealVSR [13] 6.588 / 28.61 / 14.41 6.608 / 28.49 / 14.26 6.693 / 28.32 / 14.10
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Figure 1. The visualization of implicit kernels (Left) and predicted weights (Right).
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