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A. Experimental Details
A.1. Network Design

As mentioned in Eq. (6) of the paper, we show the imple-
mentation of function Soft(-) at the iteration of k as

Soft(z, k) = (1 + min(k, kmax) exp(z)) 1, (S1)

where the threshold K,y is set as 10° empirically. The
design rationale is to gradually approach a step function,
and to keep it unchanged after the training step reaches the
threshold. During inference, we fix k = kpax.

A.2. Efficiency Comparison

As an important factor in real-world deployment, the du-
rations of the proposed method and the baselines are com-
pared. Profiled on EBB Val294 [2], the average interval of
bokeh rendering is listed in Tab. S1. All the tests are con-
ducted on a single NVIDIA RTX A6000 GPU, and only the
duration of the model forward time is calculated. Note that
MPIB [7] and Dr. Bokeh requires significantly longer time
to run, because they requires per-layer inpainting in their
multi-layer representations.

A.3. Datasets and Quantitative Comparisons

EBB Val294 is an established subset [4, 9] of the EBB!
dataset [2]. It is composed of image pairs of wide and shal-
low depth of field captured by a DSLR camera. Though

image registration is already performed [2], there are many
cases where the ground truth deviates from the input in
terms of global exposure level. As shown in Fig. S1, the
all-in-focus image is obviously darker in the first two ex-
amples, and shows black edges near the image edge, which
is caused by image registration. These artifacts combined
makes the metrics of pixel-wise correspondence less per-
suasive in the original dataset.

For a more informed comparison, we test the perfor-
mance of the images by comparing them to the origi-
nal EBB Val294 [2] dataset, and the results are shown in
Tab. S1. Note that as the apertures used in the EBB [2]
dataset are unknown, we find the optimal aperture by bi-
nary searching, similar to the approach taken by previous
methods [6, 7]. As the quantitative metrics in the paper are
calculated on the exposure-aligned EBB Val294 [2] dataset,
we first report the quantitative performance with the same
aperture as the paper in the left columns of Tab. S1. Then
we search for the optimal aperture on the original EBB
Val294 [2] dataset, and list the metrics in the right columns
of Tab. S1.

BLB [6], a synthetic dataset proposed by BokehMe [6],
consisting of 10 scenes, and 10 focal settings for each, ren-
dered by Blender. The rendered bokeh can be significantly
larger than real-world bokeh, so it can measure the accu-
racy of the underlying physics model. The most challenging

Table S1. Quantitative comparison on the exposure-aligned and the original EBB Val294 [2] dataset with the same optimized aperture as
the paper (left), and the aperture that is optimized in the original EBB Val294 [2] datset (right). 1 () indicates larger (smaller) values are
better, and bold font indicates the best results. * denotes that the method is trained with the same dataset as BokehDiff.

Dataset Exposure-aligned EBB Val294 [2] Original EBB Val294 [2]
Method Duration (s) PSNR{T SSIMT DISTS] LPIPS] PSNRfT SSIM{T DISTS| LPIPS|
DeepLens [3] 0.402 22703 0.7623 0.1483 0.4191 22.065 0.7604 0.1509 0.4224
MPIB [7] 31.87 23.334  0.7920 0.1581 0.4031 22.450 0.7892 0.1616 0.4056
BokehMe [6] 1.531 24.014 0.8134 0.1460 0.3921 23.247 0.8117 0.1463 0.3918
Dr.Bokeh [8] 99.67 23479 0.8221 0.1225 0.3771 21.298 0.8061 0.1338 0.3878
Restormer® [10] 0.962 23.960 0.7961 0.1297 0.3778 23.188 0.7964 0.1314 0.3801
BokehMe™* [6] 1.531 23.753 0.7919 0.1437 0.3967 22.857 0.7886 0.1458 0.3998
BokehDiff 3.974 24.652 0.8357 0.1155 0.3737 23.728 0.8390 0.1148 0.3711
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Figure S1. Examples from the original EBB [2] dataset that shows
misalignment. In the first two example, the lens blur image has
clearly more exposure than the all-in-focus image; In the second
and the third example, the images show some black edges near the
image border, which is caused by image registration.

Table S2. Quantitative comparison on the SYNBOKEH300
dataset. 1 (|) indicates larger (smaller) values are better, and bold
font indicates the best results. * denotes that the method is trained
with the same dataset as BokehDiff.

Method PSNRT SSIM{ DISTS| LPIPS|
DeepLens [3] 24.824 0.8121 0.1403 0.3218
MPIB [7] 31.588 0.9465 0.0499 0.1129
BokehMe [6] 33.357 09532 0.0459 0.1129
Dr.Bokeh [8] 30.157 09532 0.0682 0.1504
Restormer® [10] 32.016 0.9220 0.0695 0.1695
BokehMe™* [6] 31.329 09403 0.0641 0.1231
BokehDiff 34.165 0.9784 0.0433 0.1119

level 5 is used for evaluation.

SYNBOKEH300, a new synthetic benchmark generated
as described in the paper. It is composed of 300 images,
at 4 levels of different lens blur strengths, the ground truth
disparity map, focus distance, and the all-in-focus input im-
ages. The dataset excels others in terms of photorealism
and diversity, and can be used to evaluate the performance
in real-world scenarios. The results are listed in Tab. S2.

B. Explanation on the EBB Dataset

Note that given a method, we select the “best” result by se-
lecting the aperture parameters that has the best SSIM per-
formance. As the original EBB Val294 [2] dataset is not
aligned in exposure level, it may hinder the optimal expo-
sure level selection process. As observed in Tab. S1, both
of the two groups are tested on the original EBB Val294 [2]
dataset, but the LPIPS [11] performance of the group opti-
mized on exposure-aligned EBB Val294 [2] dataset is ob-
viously superior. As discussed in the paper, LPIPS [11] is
more sensitive to blurriness by design, and less sensitive to
pixel-level difference. The efficacy of BokehDiff is further
proved by the performance listed in Tab. S1.

C. Samples of the Data Synthesis Pipeline

Figure S2. Diverse scenes sampled from the SYNBOKEH300
dataset, to verify its photorealism and diversity.

To demonstrate the results of the proposed data syn-
thesis, we provide some samples of the SYNBOKEH300
dataset. In Fig. S2, the scene diversity of the SYN-
BOKEH300 dataset is demonstrated sufficiently. In Fig. S3,
we further show that the synthesis pipeline can generate
both background-focused and foreground-focused images
photo-realistically.

Note that the ability of BokehDiff to focus on any spe-
cific depth (as shown in the paper and later in Appendix D)
originates from the training data. By randomly placing the
location and facing angles, the rendered data contains pro-
gressively blur with respect to the changing depth, as well
as the different amount of blur caused by the disparity offset
from the focal plane.

D. More Results
D.1. Adjusting Aperture

We first demonstrate the results of increasing the blurriness
in Fig. S4. In the first case, BokehDiff successfully creates
the desired progressive blurriness, and in the second case,
manages to blur both the foreground and the background
that are off the focal plane. In both examples, BokehDiff is
able to follow the underlying physics rules, and creates the
right results at depth discontinuities.

D.2. Adjusting Focus Distance

We provide another example of changing focus distance in
Fig. S5. As the error is more subtle when the background
and foreground are both out of focus, we mainly present the
images that focuses on the foreground.



(b) All-in-focus

(c) Synthetic ground truth with different aperture parameters and different focus distance.
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Figure S3. An example of the synthetic data. With the mechanism described in the paper, we can get (a) disparity map, (b) all-in-focus
image as input, and (c) synthetic ground truth images under different apertures and focus distance settings. Note that the first row in (c) is
focused on the background, and the second is on the foreground, with aperture growing larger from left to right.

(a) Inputs (b) 1x blur

(c) 2x blur

(d) 3x blur

Figure S4. Given the defocus map and all-in-focus image shown in (a), we demonstrate the results of gradually increasing the aperture
parameters, from (b) 1x blurriness to (c) 3x blurriness. Please zoom in for details.

D.3. Comparisons

Here we provide some more comparisons of BokehDiff and
the baselines, to further validate the efficacy of BokehDiff.
First we demonstrate some more comparisons in Fig. S6.
In the first example, BokehDiff successfully focuses on the
person, and creates a progressive blurrness for the ground
behind and before the person. In comparison, BokehMe [6]
over-blurs the person’s helmet and hands due to the erro-
neous disparity estimation. MPIB [7] fails to produce the
progressive blur, while Dr. Bokeh [8] creates unnatural split

near the boundary of the person.

In the second example, all the baselines over-blurs the
thin end of the man’s beard, while BokehDiff keeps the fo-
cused detail intact. As for the blurry foreground, BokehDiff
creates a physically correct and beautiful semi-transparent
blur near the unfocused edge of the sleeves. In comparison,
the baselines either create a hard edge (BokehMe [6] and
Dr. Bokeh [8]) or over-blur the boundary (MPIB [7]).

The third example is another case where BokehDiff out-
performs previous methods at depth discontinuities. Most



Figure S5. A synthetic focal stack of BokehDiff, given an all-in-focus image selected from the Unsplash [1] dataset.

of the hair of the person should be focused, but the baselines
over-blur the part near the edge, while BokehDiff manages
to keep the fine details in focus. The transition to out-of-
focus area is also smooth and natural.

We continue the demonstration of results in Fig. S7. In
the first example BokehDiff keeps the thin details of the
cat’s fur while blurring the window behind them, while the
other methods show different degrees of artifacts. In the
second example, BokehDiff manages to create a progres-
sive blur as the defocus increases, while keeping the focused
foreground intact, even in such area as the hair seam and the
elbow where the background is messy. In comparison, the
baselines follow the inaccurate depth estimation result, and
create bumps near the hair, and unnatural zig-zags near the
elbow. The hair in the green box is also blurred by mistake.

The third example also demonstrates the effectiveness
of BokehDiff in generating realisitic lens blur for intricate
structures. The progressive blur in the background also val-
idates that BokehDiff follows the image formation model.

In Fig. S8, as shown from the first two examples, the pro-
posed method also work on images shot with a wide aper-
ture, and further blurs the blurred background while keeping
the foreground in focus. Both the hair streaks of the person
and the furs of the cat are effectively kept. In the third ex-
ample, BokehDiff also show the ability to synthesize pro-
gressive blurriness, while keeping the person’s beard and
the focused T-shirt. In comparison, the baselines cannot
preserve the intricate details, as well as the regions where
depth estimation methods go wrong, such as the hair of the
person in the first example, the fur near the cat’s ear in the
second example, and the T-shirt edge in the third example.

To sum up, given all the demonstrated results, we con-
clude that the results rendered by BokehDiff are both phys-
ically reasonable and visually pleasant.

E. Visual Results of Ablation Study

We present some visual results to further support the abla-
tion study in Fig. SO.

As the PISA module is designed to bring in constraints
related to physics, an incomplete version cannot model the
image formation model by design, and thus can only resort
to learning from the data distribution.

We first try removing the circle-of-confusion constraint,
and the result in Fig. S9(b) looks very similar to the all-
in-focus input, indicating that the PISA module determines
how much the blurriness should be.

In Fig. S9(c), removing the self-occlusion from the PISA
module blurs the foreground that should be in focus, which
is caused by the ignorance of keeping the foreground before
the background, since self-occlusion is removed.

As for the energy-conserved normalization, since the en-
ergy no longer follows the physics intuition, the results
look blurry even for the focused region in the green box
of Fig. S9(d).

F. Future Works

We conclude the paper with the some ideas for thought,
hoping that BokehDiff inspire more interesting works.

The realm of lens blur rendering still lacks a metric
to measure the “photorealism”. With paired data, LPIPS
is found to be the most sensitive to wrong blurring pat-
tern [11]. However, it is easy for human vision system to
see the lens blur is synthesized, even without ground truth.
The prior behind such phenomenon is intriguing, and re-
quires further analysis.

For example, will it be possible to train a discrimina-
tor that is able to focus on the low-level details that ren-
ders the image to be “fake” to human eyes, as an important
reference-free metric? If so, can we iterate a generator over
the discriminator, to yield even more realistic images?
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Figure S6. More qualitative comparisons of BokehDiff with BokehMe [6], MPIB [7], and Dr. Bokeh [8]. Calculated from disparity, the
defocus map is shared across the methods to be compared. The defocus map is for reference only, with whiter regions for more lens blur,
but is subjected to error caused by depth estimation.

In addition, photorealistic video lens blur rendering is
also an interesting follow-up thread, with its unique chal-
lenges such as consistency. With the proposed data synthe-
sis pipeline, it will be easier to train a similar video bokeh
rendering method, but this idea is beyond the scope of the
paper, and deserves a paper of its own.
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As for the model design, the PISA module requires more
investigation. The biggest difference is that it changes the
dimension on which to perform normalization. It is not self-
evident to scale the default normalization to larger models
(such as DiT [5]).
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Figure S7. More qualitative comparisons of BokehDiff with BokehMe [6], MPIB [7], and Dr. Bokeh [8]. Calculated from disparity, the
defocus map is shared across the methods to be compared. The defocus map is for reference only, with whiter regions for more lens blur,
but is subjected to error caused by depth estimation.
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Figure S8. More qualitative comparisons of BokehDiff with BokehMe [6], MPIB [7], and Dr. Bokeh [8]. Calculated from disparity, the
defocus map is shared across the methods to be compared. The defocus map is for reference only, with whiter regions for more lens blur,
but is subjected to error caused by depth estimation.



(a) All-in-focus (b) W/o CoC (c) W/o occlusion (d) W/o SoftmaxQ (e) Complete Model

Figure S9. Visual comparisons of the ablation study. The setting of “SoftmaxQ”, “CoC”, and “occlusion” are short for the energy-conserved
normalization, circle of confusion constraint, and self-occlusion respectively.
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