
In this Supplementary Material, we provide additional details of
our method. Section A elaborates on key implementation aspects,
including the importance-based rearrangement strategy and the
customized improvements to the NSGA-II algorithm. Section B
describes the training setup for Curriculum Elastic Adaptation and
outlines the hyperparameters used for different datasets. Section
C presents additional results, including comparisons under more
evaluation metrics and detailed accuracy across multiple MACs
levels. Section D presents the architectural configurations of the se-
lected submodels under varying MACs constraints across multiple
datasets. Section E discusses some potential applications.

A. Method Details
A.1. Importance Rearrangement
Before constructing the elastic structure, we perform importance-
based rearrangement across the expandable dimensions in the Vi-
sion Transformer (ViT). This process prioritizes critical units, en-
suring they are shared across a larger number of submodels within
the nested elastic structure. As a result, important units are sampled
more frequently during training, receive more updates, and achieve
better robustness and transferability across different submodel con-
figurations.

Embedding Dimension Importance. A Vision Transformer
(ViT) consists of a stack of L identical Transformer blocks, where
each block includes a Multi-Head Attention (MHA) module and a
Feed-Forward Network (MLP), both equipped with residual con-
nections and Layer Normalization (LN).

Given the initial input sequence x(0) ∈ RN×Demb , the feature
propagation across blocks is:

x(l+1) = Block(l)(x(l)), l = 0, . . . , L− 1. (9)

Each block computes:

y(l) = x(l) + MHA(LN(x(l))),

x(l+1) = y(l) + MLP(LN(y(l))).
(10)

To assess the importance of each embedding channel, we use
the final block output x(L). For each embedding dimension i ∈
{1, . . . , Demb}, the importance score is computed as:

F
(i)
emb =

∑
s∈X

∥∥∥x(L,i)(s)
∥∥∥
1
, (11)

where X denotes the sampled input set, and x(L,i)(s) represents
the activation of the i-th embedding dimension for sample s.

MLP Hidden Dimension Importance. Each MLP module
consists of two linear layers with an intermediate hidden dimension
Dhid = r ×Demb, where r is the expansion ratio. Given an input
z ∈ RN×Demb , the MLP computation proceeds as:

h = zW1, z′ = ϕ(h)W2, (12)

where W1 ∈ RDemb×Dhid , W2 ∈ RDhid×Demb , and ϕ(·) is the
activation function (e.g., GELU).

The importance of each hidden neuron j ∈ {1, . . . , Dhid} is
measured as:

F
(j)
mlp =

∑
s∈X

∥∥∥ϕ(
h(l,j)(s)

)∥∥∥
1
, (13)

where h(l,j)(s) denotes the activation of the j-th hidden neuron at
layer l for sample s.

MHA Attention Head Importance. For each block, the
MHA module applies self-attention to the input z(l). For head
m ∈ {1, . . . , h(l)}, the queries, keys, and values are computed as:

q(m) = z(l)W
(m)
Q , k(m) = z(l)W

(m)
K , v(m) = z(l)W

(m)
V ,
(14)

where W
(m)
Q ,W

(m)
K ,W

(m)
V ∈ RDemb×dhead are the projection ma-

trices, and dhead is the dimension per head.
The attention output for head m is:

a(l,m) = softmax

q(m)
(
k(m)

)⊤

√
dhead

v(m). (15)

The full MHA output is obtained by concatenating all heads:

MHA(z(l)) = Concat
[
a(l,1), . . . ,a(l,h(l))

]
WO, (16)

where WO ∈ Rh(l)dhead×Demb is the output projection matrix.
The importance score of each attention head m is computed as:

F
(m)
head =

∑
s∈X

∥∥∥a(l,m)(s)
∥∥∥
1
, (17)

where a(l,m)(s) denotes the output of head m for input s.

In practice, we use 1024 samples to compute the importance
scores. After obtaining all scores, the embedding dimensions, MLP
hidden neurons, and MHA heads are individually rearranged in
descending order according to their importance.

A.2. Details of NSGA-II for Submodel Search
In the main text, we briefly introduced how we apply NSGA-II to
identify the Pareto front of submodels balancing complexity and
accuracy. Here, we provide a detailed description.

Principle. NSGA-II is a classic multi-objective evolutionary
algorithm designed to find Pareto-optimal solutions. It maintains
a population of candidates, evolving them through crossover and
mutation operations. Selection is based on fast non-dominated
sorting, which ranks solutions into Pareto fronts, and crowding
distance, which maintains diversity within the population.

Encoding. We encode each submodel configuration as a com-
pact binary sequence.

For the embedding dimension, we reduce the search space by
setting Demb = k × dhead, where k is a scaling factor controlling
the embedding size and dhead is the dimension per attention head.
The value of k is encoded using k binary bits, and during decoding,

(b) Classical NSGA-II

(a) Ours

Figure 7. Comparison between the proposed customized NSGA-II algorithm (a) and the standard NSGA-II baseline (b). The
customized variant yields a more diverse and well-distributed population across MACs, offering broader coverage and avoiding the
redundancy typically exhibited by the standard approach.

the final embedding dimension is obtained by summing the active
bits and multiplying by dhead.

For the MLP expansion ratio r, we adopt an 8-bit binary en-
coding, allowing r to vary between 0.5 and 4.0. Similar to the
embedding dimension, the final expansion ratio is derived by sum-
ming the activated bits.

For the number of attention heads h in the MHA module, we
again allocate k binary bits. The number of active heads is deter-
mined by summing the corresponding bits during decoding.

Finally, for depth control, we allocate L binary bits for the MHA
path and another L bits for the MLP path, where L is the total
number of blocks. Each bit specifies whether the corresponding
block is retained (1) or skipped (0) during submodel instantiation.

Search Procedure. During the search phase, we use a mini-
batch of 1024 samples randomly drawn from the training set to
evaluate candidate submodels. However, due to the small batch
size and the risk of overfitting on the training set, directly applying
standard NSGA-II—based on non-dominated sorting with crowd-
ing distance—may result in limited solution diversity and poor
coverage of the search space.

To mitigate this, we introduce a partitioned selection strategy.
Specifically, we divide the normalized MACs range into 20 intervals
and perform independent selection within each interval, ensuring
that the overall population achieves broad coverage across different
model complexity levels.

Within each partition, a minimum complexity difference be-
tween selected individuals is enforced to enhance diversity. During
selection, individuals from the current Pareto front are prioritized.
For subsequent fronts, crowding distance is recalculated jointly
over the candidate set and the already selected individuals. Se-
lection is then performed based on the updated crowding distance

ranking, encouraging a more diverse and well-distributed submodel
population across the entire search space.

Initialization. At the initialization stage, we construct the pop-
ulation using only two types of individuals: one with all-zero
encoding and one with all-one encoding, corresponding to the two
extremes of model complexity. New offspring are subsequently
generated through crossover and mutation operations. Compared to
random initialization, this strategy provides better coverage of the
search space boundaries and significantly accelerates convergence
during early generations.

Setting. We set the population size to 100, the crossover proba-
bility to 0.95, the mutation probability to 0.3, and the number of
iterations to 300.

Results. As shown in Figure 7, we compare the performance of
the classical NSGA-II and our improved NSGA-II on the SVHN
dataset after 0, 50, 100, and 150 iterations, under identical initial-
ization conditions. We visualize both the population distribution
and the corresponding Pareto fronts at each stage. Our improved
NSGA-II exhibits faster convergence, higher-quality solutions, and
greater population diversity. In contrast, the standard NSGA-II
suffers from noticeable redundancy, where the population collapses
into a few repetitive solutions as the iteration progresses.

The Figure 8 shows the evolution of the Pareto front over gener-
ations across nine datasets, demonstrating the effectiveness of our
search strategy in progressively identifying high-quality submodels
under varying resource constraints.

Figure 8. Evolution of the Pareto front over generations on nine image classification datasets.

B. Training Hyperparameter Settings
B.1. Curriculum Elastic Adaptation Training Set-

ting
We conduct our experiments using ViT-Base as the backbone. The
training configuration for the Curriculum Elastic Adaptation stage
is detailed below.

The model is trained for a total of 100 epochs, with elasticity
expansion scheduled at epochs {10, 15, 20, 25, 30, 35}. At each
expansion step, the sampling ranges of the submodel hyperparame-
ters are progressively broadened to increase the model’s elasticity.

Initially, the upper bounds are set as:

Rmax = 4, Hmax = 12, Emax = 768, nmax = 0,

where Rmax denotes the maximum MLP expansion ratio, Hmax

maximum number of attention heads, Emax the maximum embed-
ding dimension, and nmax controls the maximum number of layers
that can be skipped.

The decrements applied at each expansion step are configured
as:

∆R = {1, 0.5, 0}, ∆H = 1, ∆E = 64, ∆n = 1,

where ∆n is applied only during the first two expansion steps to
gradually introduce layer skipping.

By the end of the Curriculum Elastic Adaptation stage, the
sampling ranges are expanded to:

R ∈ [0.5, 4], H ∈ [6, 12], E ∈ [384, 768].

B.2. Learning Rate and Training Epochs
For all nine image classification datasets, we trained the model for
100 epochs in both Stage 1 and Stage 2. Except for FGVC [35]
and Stanford Cars [25], we used a learning rate that decays from
1e-5 to 1e-7 with linear warm-up and cosine decay in both stages.
For FGVC [35] and Stanford Cars [25], we adopted a higher initial
learning rate: 1e-4 to 1e-6 in Stage 1, and 1e-5 to 1e-7 in Stage 2.

On segmentation benchmarks ADE20K [61], we trained for 25
epochs per stage using a learning rate schedule from 1e-5 to 1e-7
throughout.

For more difficult datasets Imagenet-1K [8], Kvasir [40] and
UCMerced [53], we also followed a 100+100 epoch training sched-
ule, using a learning rate from 1e-5 to 1e-7 in both stages.

All learning rates mentioned above refer to the ViT backbone.
The learning rate for the router was set to 1,000 times that of the
backbone.

For all baselines, we ensured that the total number of training
epochs was kept consistent with our method.

Figure 9. Comparison of Top-1 accuracy under different latency
and parameter count constraints on the ImageNet-1K dataset.
Our method consistently outperforms existing approaches, demon-
strating superior trade-offs not only in computation (MACs), but
also in latency and model size, which are critical for real-world
deployment.

C. More Results
C.1. Comparision wtih other metrics
While the main text focuses on the MACs–accuracy trade-off, we
further assess our method using additional metrics, including la-
tency and parameter count. As shown in Figure 9, we compare our
model with existing approaches on the ImageNet-1K dataset. The
results show that our method consistently achieves higher accuracy
under varying latency and parameter constraints. This demonstrates
that our approach not only achieves a superior trade-off in terms of
computational cost, but also performs competitively across other
key deployment-related metrics.

C.2. Comparision under more MACs
As shown in Table 4, we compare our method with previous ap-
proaches under five MACs levels: 5, 8, 11, 14, and 17 GMACs.
Our method consistently achieves superior performance across
most settings, with particularly pronounced advantages under lower
computational budgets.

D. Visualization of Submodel Architectures
As shown in Figure 10, we visualize the architectural configurations
of submodels on nine datasets under normalized MACs constraints
of 0.3 and 0.7. Specifically, we present the per-layer MLP expan-
sion ratios and the number of attention heads in the MHA modules,
revealing clear differences across datasets and computational bud-
gets.

In addition, we illustrate how the router’s output evolves as the
normalized MACs constraint varies in Figure 11. For each dataset,
we report the average number of attention heads, MLP expansion
ratios, embedding dimensions, and the number of MHA and MLP
layers selected by the router. These results provide insight into how
the model adjusts architectural complexity in response to resource
constraints and dataset characteristics.

E. Potential Applications
Although this work focuses on Vision Transformers and primarily
targets image classification and segmentation tasks, the proposed
EA-ViT framework can be seamlessly applied to other Transformer-
based architectures and extended to broader domains such as image
and video editing [32, 33, 49]. Furthermore, incorporating more

deployment-efficient datasets [50–52] may further enhance both
efficiency and performance in real-world scenarios.

Table 4. Comparison of Top-1 accuracy across nine classification benchmarks under five GMACs constraints. The best results are
highlighted in bold, and the second-best are underlined.

Method Dataset

Cifar 10[26] Cifar 100 [26] SVHN[11] Flowers [38] Food101 [1] Aircraft [35] Cars [25] DTD [6] Pets [39]

5 GMACs Budget

DynaBERT[20] – – – – – – – – –
MatFormer[9] – – – – – – – – –
HydraViT[12] 91.99 73.26 96.26 12.09 73.92 70.66 78.98 21.31 31.36
Flextron[3] – – – – – – – – –
EA-ViT (ours) 95.81 80.49 97.49 64.85 83.32 79.06 86.91 59.99 78.95

8 GMACs Budget

DynaBERT[20] 94.24 78.30 96.58 24.53 82.24 71.19 80.19 36.88 57.05
MatFormer[9] 96.17 86.18 97.45 69.00 86.31 76.13 88.10 49.25 84.53
HydraViT[12] 96.11 85.39 96.98 29.27 85.49 75.95 85.07 43.53 75.32
Flextron[3] 97.11 85.95 97.61 73.80 87.79 79.36 88.62 61.21 86.35
EA-ViT (ours) 97.98 88.20 97.63 85.39 90.05 83.37 90.09 67.56 90.57

11 GMACs Budget

DynaBERT[20] 97.53 88.29 96.96 62.46 88.61 74.61 83.47 58.18 83.04
MatFormer[9] 98.08 90.29 97.65 88.00 90.52 78.93 90.49 64.86 91.64
HydraViT[12] 98.08 89.89 97.24 70.46 89.58 77.94 87.18 63.38 89.12
Flextron[3] 98.38 90.34 97.72 82.51 90.85 79.86 90.24 69.54 92.85
EA-ViT (ours) 98.53 90.64 97.70 93.45 91.20 84.78 91.28 71.97 92.49

14 GMACs Budget

DynaBERT[20] 98.17 91.07 97.42 75.70 90.85 75.93 87.78 65.70 89.85
MatFormer[9] 98.76 92.14 97.77 94.61 92.21 80.11 91.37 71.86 93.37
HydraViT[12] 98.64 91.98 97.62 85.46 91.67 79.05 89.19 69.81 92.29
Flextron[3] 98.71 91.88 97.71 84.98 91.94 80.05 91.09 72.68 93.87
EA-ViT (ours) 98.96 92.62 97.81 96.13 92.73 85.47 91.95 74.94 93.55

17 GMACs Budget

DynaBERT[20] 98.89 92.95 97.76 83.05 92.77 79.53 90.77 73.05 93.53
MatFormer[9] 99.03 92.91 97.87 96.96 93.07 80.84 91.76 75.29 94.06
HydraViT[12] 98.91 93.13 97.83 90.75 92.98 79.21 89.99 73.72 93.68
Flextron[3] 98.79 92.61 97.77 85.97 93.02 80.52 91.23 73.56 94.16
EA-ViT (ours) 99.09 93.22 97.84 95.79 93.13 85.48 92.17 74.93 94.32

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

0 2 4 6 8 10 120 2 4 6 8 10 12 0 2 4 6 8 10 120 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

Figure 10. Layer-wise visualization of submodel architectures under normalized MACs constraints of 0.3 and 0.7 across nine datasets.
For each submodel, we plot the MLP expansion ratio and the number of attention heads in each layer. The comparison reveals distinct
architectural patterns that emerge under different computational budgets and dataset characteristics.

Cifar10

Cifar100

FGVC Aircraft

Food-101

Oxford-IIIT Pets

DTD

Stanford Cars

Flowers-102

SVHN

Figure 11. Trends in architectural configurations selected by the router as the normalized MACs constraint varies. For each of the
nine datasets, we report the average number of MHA attention heads, MLP expansion ratio, embedding dimension, and the number of MHA
and MLP layers. The results demonstrate how the router dynamically adapts submodel complexity based on resource constraints and dataset
demands.

	Introduction
	Related Work
	Method
	Multi-Dimensional Elastic Architecture
	Curriculum Elastic Adaptation
	Pareto-Optimal Submodel Search
	Constraint-Aware Router

	Evaluation
	Experiment Setup
	Comparison with State-of-the-Art Methods
	Ablation Study
	Analysis

	Conclusion
	Method Details
	Importance Rearrangement
	Details of NSGA-II for Submodel Search

	Training Hyperparameter Settings
	Curriculum Elastic Adaptation Training Setting
	Learning Rate and Training Epochs

	More Results
	Comparision wtih other metrics
	Comparision under more MACs

	Visualization of Submodel Architectures
	Potential Applications

