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A. Details of Warp
A.1. B Spline

The B-spline function 5" of order n is obtained by n times
convolution of the zeroth-order B-spline function [38], de-
fined as:

B (x) = BO(x) % (), (15)

n times

where * denotes the convolution operation as follows:
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and /3 is the zeroth-order B-spline function:
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Higher-order B-splines offer better smoothness but come at
the cost of more complex polynomial computations. The
3rd-order B-spline (cubic B-spline) is commonly used due
to its balance between smoothness and computational effi-
ciency. Consequently, we select it as our baseline for com-
parison.

A.2. Thin-Plate Spline

The Thin Plate Spline (TPS) is an interpolation method used
to simulate smooth 2D deformations by minimizing a com-
bined energy function that balances alignment accuracy and
deformation smoothness. The energy function is defined as:

€ = Ealignment 1 AEdistortion (13)

where &;jignment 18 the alignment energy, measuring the er-
ror between the deformed control points and their target
positions; Egisiortion 1S the bending energy, quantifying the
smoothness of the deformation; and A is a balancing factor
that controls the trade-off between alignment accuracy and
deformation smoothness. Let P = {p1, p2, ..., P} be the
set of original control points and P’ = {p},p5,..., Py} be
the set of target control points (p;, p; € R?*1). The align-
ment energy is formulated as:

N
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where T'(-) is the warp function that maps the original
points to the deformed points. The bending energy, which

penalizes non-smooth deformations, is defined as:
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(20)
In our implementation, we set A = 0 to prioritize exact
alignment of the control points, following the approach of

previous work [32]. By minimizing the energy function in
Eq. 18, the warp function T'(x) can be derived as:

N
T(x) :C—&—MX—I—ZWigb(Hx—pin), (1)
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where x € R2*! is the input point coordinate, C € R2x1
M € R?*2 and w; € R?*! are transformation parameters.
#(r) = 2 log 72 is the radial basis function (RBF). To solve
for the parameters, we formulate N data constraints based
on the alignment of the control points:

T(p;))=p, for i=1,2,...,N. (22)

Additionally, to ensure the uniqueness and stability of the
solution, we impose the following constraints [20]:

N N
> w;=0 and > wp/ =0. (23)
=1 i=1

These constraints ensure that the deformation is globally
affine beyond the influence of the control points, and they
are necessary to regularize the problem. Let K € RY*/ be
the matrix of RBF values between control points, defined
as:

Ki; = o(llpi — pjll2), (24)

where p; and p; are the coordinates of the i-th and j-th
control points, respectively. The parameters can be solved
as follows:
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where P € RV*? is the matrix of original control point
coordinates, P’ € R™ 2 is the matrix of target control point
coordinates, W € R"*2 is the matrix of weight vectors w;,
1isan NV x 1 column vector of ones, and O represents zero
matrices of appropriate dimensions.



A.3. Discussion on Local Deformation Handling

While TPS provide a powerful framework for interpolating
smooth deformations, it exhibits limitations in handling lo-
calized deformations compared to B-spline Free Form De-
formation (B-spline FFD) and our proposed Exponential-
Decay Free Form Deformatio (EDFFD). The primary limi-
tation of TPS lies in its global optimization nature: the warp
function is derived by solving a linear system that simulta-
neously optimizes the parameters (C, M, and W) based on
all control points. TPS lacks the ability to directly compute
displacements based on local properties, making it less suit-
able for applications requiring fine-grained local control.

In contrast, B-spline FFD and the proposed EDFFD
leverage localized deformation mechanisms. B-spline FFD
achieves this through piecewise polynomial basis functions
with local support, ensuring that the influence of each con-
trol point is confined to a limited region. Similarly, the
EDFFD, while using a globally supported basis function,
introduces a rapid decay property that effectively limits the
influence of each control point to its immediate neighbor-
hood. Both methods allow for direct computation of dis-
placements based on local control points, enabling precise
and flexible manipulation of localized deformations.

B. Details of the Network Architecture

The network architecture of EDFFDNet-2 is detailed in
Table 10 and Table 11, excluding the multi-scale fea-
ture extractor which has been described in the manuscript.
EDFFDNet follows the same architecture as EDFFDNet-2
but without the FFD Estimator-2 component.

C. More Results
C.1. Evaluation of Challenging Cases

To further demonstrate the robustness of our model, we
evaluate its performance on challenging cases from the
UDIS-D dataset [31], as illustrated in Fig. 6. The arrows in
the figure indicate specific challenging regions where exist-
ing methods exhibit inaccurate alignment. In contrast, our
approach consistently achieves precise alignment in these
challenging areas, demonstrating its superior performance.

C.2. Evaluation of Cross-Dataset Generalization

To further validate cross-dataset generalization capabili-
ties, we provide additional qualitative results on cross-
dataset scenarios [24, 25], as illustrated in Fig. 7 Fig. 8,
Fig. 9, and Fig. 10. The results demonstrate that our
method achieves significantly better generalization perfor-
mance without requiring any fine-tuning, outperforming
previous deep learning-based methods MGDH [30] and
UDIS++ [32].



Table 10. Network Architecture of EDFFDNet-2. The details of the Group Linear Layer have been provided in the manuscript, while the
components of the ConvLayer are presented in Table 11. M; and N; represent the control point grid dimensions in local refinement stage
i.

Module Layer Input channels Output channels
Homography Estimator ConvLayer 2 64
ConvLayer 64 128
ConvLayer 128 256
Group Linear Layer 4096 2048
Group Linear Layer 2048 1024
Linear 1024 8
FFD Estimator-1 ConvLayer 81 64
ConvLayer 64 128
ConvLayer 128 256
ConvLayer 256 512
Group Linear Layer 8192 4096
Group Linear Layer 4096 2048
Linear 2048 (M; +1)x (N; +1) x 2
FFD Estimator-2 ConvLayer 81 32
ConvLayer 32 64
ConvLayer 64 128
ConvLayer 128 256
ConvLayer 256 512
Group Linear Layer 8192 4096
Group Linear Layer 4096 2048
Linear 2048 (My+1) x (Na +1) x 2

Table 11. Components of ConvLayer(Input channels, Output channels). Note: For all Conv2d layers, kernel sizes are 3 x 3, strides are 1,
and paddings are 1. The max-pooling layer has a kernel size of 2 x 2 and stride of 2.

Layer
Conv2d(Input channels, Output channels)
ReLLU
Conv2d(Output channels, Output channels)
ReLLU
MaxPool2d
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Figure 6. Qualitative results on the UDIS-D dataset [31]. The yellow arrows in the image highlight regions where other methods fail to
achieve accurate alignment.
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Figure 7. Qualitative results on cross-dataset cases [24]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 8. Qualitative results on cross-dataset cases [24]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 9. Qualitative results on cross-dataset cases in [25]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 10. Qualitative results on cross-dataset cases in [25]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.



