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A. Details of Warp
A.1. B Spline
The B-spline function βn of order n is obtained by n times
convolution of the zeroth-order B-spline function [38], de-
fined as:

βn(x) = β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
n times

, (15)

where ∗ denotes the convolution operation as follows:

(f ∗ h)(x)def=
∫ +∞

−∞
f(x− t)h(t)dt, (16)

and β0 is the zeroth-order B-spline function:

β0(x) =

{
1 : −0.5 ≤ x < 0.5
0 : otherwise

. (17)

Higher-order B-splines offer better smoothness but come at
the cost of more complex polynomial computations. The
3rd-order B-spline (cubic B-spline) is commonly used due
to its balance between smoothness and computational effi-
ciency. Consequently, we select it as our baseline for com-
parison.

A.2. Thin-Plate Spline
The Thin Plate Spline (TPS) is an interpolation method used
to simulate smooth 2D deformations by minimizing a com-
bined energy function that balances alignment accuracy and
deformation smoothness. The energy function is defined as:

ε = εalignment + λεdistortion, (18)

where εalignment is the alignment energy, measuring the er-
ror between the deformed control points and their target
positions; εdistortion is the bending energy, quantifying the
smoothness of the deformation; and λ is a balancing factor
that controls the trade-off between alignment accuracy and
deformation smoothness. Let P = {p1,p2, . . . ,pN} be the
set of original control points and P ′ = {p′

1,p
′
2, . . . ,p

′
N} be

the set of target control points (pi,p
′
i ∈ R2×1). The align-

ment energy is formulated as:

εalignment =

N∑
i=1

∥p′
i − T (pi)∥2, (19)

where T (·) is the warp function that maps the original
points to the deformed points. The bending energy, which

penalizes non-smooth deformations, is defined as:

εdistortion =

∫∫
R2

(
∂2T

∂x2

)2

+2

(
∂2T

∂x∂y

)2

+

(
∂2T

∂y2

)2

dx dy.

(20)
In our implementation, we set λ = 0 to prioritize exact
alignment of the control points, following the approach of
previous work [32]. By minimizing the energy function in
Eq. 18, the warp function T (x) can be derived as:

T (x) = C+Mx+

N∑
i=1

wiϕ(∥x− pi∥2), (21)

where x ∈ R2×1 is the input point coordinate, C ∈ R2×1,
M ∈ R2×2, and wi ∈ R2×1 are transformation parameters.
ϕ(r) = r2 log r2 is the radial basis function (RBF). To solve
for the parameters, we formulate N data constraints based
on the alignment of the control points:

T (pi) = p′
i for i = 1, 2, . . . , N. (22)

Additionally, to ensure the uniqueness and stability of the
solution, we impose the following constraints [20]:

N∑
i=1

wi = 0 and
N∑
i=1

wip
⊤
i = 0. (23)

These constraints ensure that the deformation is globally
affine beyond the influence of the control points, and they
are necessary to regularize the problem. Let K ∈ RN×N be
the matrix of RBF values between control points, defined
as:

Ki,j = ϕ(∥pi − pj∥2), (24)

where pi and pj are the coordinates of the i-th and j-th
control points, respectively. The parameters can be solved
as follows: C

M
W

 =

1 P K
0 0 1⊤

0 0 P⊤

−1 P′

0
0

 , (25)

where P ∈ RN×2 is the matrix of original control point
coordinates, P′ ∈ RN×2 is the matrix of target control point
coordinates, W ∈ RN×2 is the matrix of weight vectors wi,
1 is an N × 1 column vector of ones, and 0 represents zero
matrices of appropriate dimensions.



A.3. Discussion on Local Deformation Handling
While TPS provide a powerful framework for interpolating
smooth deformations, it exhibits limitations in handling lo-
calized deformations compared to B-spline Free Form De-
formation (B-spline FFD) and our proposed Exponential-
Decay Free Form Deformatio (EDFFD). The primary limi-
tation of TPS lies in its global optimization nature: the warp
function is derived by solving a linear system that simulta-
neously optimizes the parameters (C, M, and W) based on
all control points. TPS lacks the ability to directly compute
displacements based on local properties, making it less suit-
able for applications requiring fine-grained local control.

In contrast, B-spline FFD and the proposed EDFFD
leverage localized deformation mechanisms. B-spline FFD
achieves this through piecewise polynomial basis functions
with local support, ensuring that the influence of each con-
trol point is confined to a limited region. Similarly, the
EDFFD, while using a globally supported basis function,
introduces a rapid decay property that effectively limits the
influence of each control point to its immediate neighbor-
hood. Both methods allow for direct computation of dis-
placements based on local control points, enabling precise
and flexible manipulation of localized deformations.

B. Details of the Network Architecture
The network architecture of EDFFDNet-2 is detailed in
Table 10 and Table 11, excluding the multi-scale fea-
ture extractor which has been described in the manuscript.
EDFFDNet follows the same architecture as EDFFDNet-2
but without the FFD Estimator-2 component.

C. More Results
C.1. Evaluation of Challenging Cases
To further demonstrate the robustness of our model, we
evaluate its performance on challenging cases from the
UDIS-D dataset [31], as illustrated in Fig. 6. The arrows in
the figure indicate specific challenging regions where exist-
ing methods exhibit inaccurate alignment. In contrast, our
approach consistently achieves precise alignment in these
challenging areas, demonstrating its superior performance.

C.2. Evaluation of Cross-Dataset Generalization
To further validate cross-dataset generalization capabili-
ties, we provide additional qualitative results on cross-
dataset scenarios [24, 25], as illustrated in Fig. 7 Fig. 8,
Fig. 9, and Fig. 10. The results demonstrate that our
method achieves significantly better generalization perfor-
mance without requiring any fine-tuning, outperforming
previous deep learning-based methods MGDH [30] and
UDIS++ [32].



Table 10. Network Architecture of EDFFDNet-2. The details of the Group Linear Layer have been provided in the manuscript, while the
components of the ConvLayer are presented in Table 11. Mi and Ni represent the control point grid dimensions in local refinement stage
i.

Module Layer Input channels Output channels
Homography Estimator ConvLayer 2 64

ConvLayer 64 128
ConvLayer 128 256

Group Linear Layer 4096 2048
Group Linear Layer 2048 1024

Linear 1024 8
FFD Estimator-1 ConvLayer 81 64

ConvLayer 64 128
ConvLayer 128 256
ConvLayer 256 512

Group Linear Layer 8192 4096
Group Linear Layer 4096 2048

Linear 2048 (M1 + 1)× (N1 + 1)× 2
FFD Estimator-2 ConvLayer 81 32

ConvLayer 32 64
ConvLayer 64 128
ConvLayer 128 256
ConvLayer 256 512

Group Linear Layer 8192 4096
Group Linear Layer 4096 2048

Linear 2048 (M2 + 1)× (N2 + 1)× 2

Table 11. Components of ConvLayer(Input channels,Output channels). Note: For all Conv2d layers, kernel sizes are 3× 3, strides are 1,
and paddings are 1. The max-pooling layer has a kernel size of 2× 2 and stride of 2.

Layer
Conv2d(Input channels,Output channels)

ReLU
Conv2d(Output channels,Output channels)

ReLU
MaxPool2d
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Figure 6. Qualitative results on the UDIS-D dataset [31]. The yellow arrows in the image highlight regions where other methods fail to
achieve accurate alignment.
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Figure 7. Qualitative results on cross-dataset cases [24]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 8. Qualitative results on cross-dataset cases [24]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 9. Qualitative results on cross-dataset cases in [25]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.
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Figure 10. Qualitative results on cross-dataset cases in [25]. The arrows in the image highlight regions where other methods fail to achieve
accurate alignment.


