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A. Theoretical Analysis
Theorem 1. The mutual information between the action un-
derstanding representation u and the embodied execution
representation e can be estimated by optimizing the trans-
formations Tu and Te to minimize the bidirectional align-
ment loss Lalign.

Proof. The mutual information between u and e is defined
as:

I(u; e) = DKL(p(u, e)→p(u)p(e)). (7)

Since direct computation is intractable, we introduce train-
able transformations:

zu = Tu(u), ze = Te(e), (8)

where Tu and Te are optimized via a loss function. By
the Data Processing Inequality (DPI), these transforma-
tions satisfy:

I(zu; ze) ↑ I(u; e), (9)

with equality if Tu and Te preserve all relevant information.
Thus, we estimate I(u; e) indirectly via I(zu; ze).

To estimate I(zu; ze), we approximate the conditional
distributions using contrastive learning. For a batch of size
B, define:

p̂(zu|ze) =
exp(sim(zu, ze)/ω)

∑B
j=1 exp(sim(zu, z

(j)
e )/ω)

, (10)

where z(j)
e are batch samples, sim is a similarity function

(e.g., cosine similarity), and ω is a temperature parameter.
This approximates the intractable sum over p(ze).

Since KL divergence is non-negative:

DKL(p(zu|ze)→p̂(zu|ze)) ↓ 0, (11)

it follows that:

Ep(zu,ze)[log p(zu|ze)] ↓ Ep(zu,ze)[log p̂(zu|ze)]. (12)

Similarly, for the reverse direction:

p̂(ze|zu) =
exp(sim(ze, zu)/ω)

∑B
j=1 exp(sim(ze, z

(j)
u )/ω)

, (13)

and:

Ep(zu,ze)[log p(ze|zu)] ↓ Ep(zu,ze)[log p̂(ze|zu)]. (14)

The mutual information I(zu; ze) can be expressed as:

I(zu; ze) = Ep(zu,ze)[log p(zu|ze)] ↔ Ep(zu)[log p(zu)].
(15)

Assuming the batch approximates p(zu) as uniform (a com-
mon heuristic in contrastive learning):

Ep(zu)[log p(zu)] ↗ ↔ logB. (16)

Define the single-direction InfoNCE loss:

LInfoNCE = ↔ 1

B

B∑

i=1

log
exp(sim(z(i)

u , z(i)
e )/ω)

∑B
j=1 exp(sim(z(i)

u , z(j)
e )/ω)

.

(17)
Substituting into the mutual information bound:

I(zu; ze) ↓ logB ↔ LInfoNCE. (18)

Given the bidirectional alignment loss defined earlier in
Equation 2, we note that:

Lalign =
1

2
(Lu→e + Le→u) , (19)

where Lu→e is the InfoNCE loss from zu to ze, and Le→u

is from ze to zu. Since each provides a bound:

I(zu; ze) ↓ logB ↔ Lu→e, I(zu; ze) ↓ logB ↔ Le→u,
(20)

substituting Lalign, the combined lower bound becomes:

I(zu; ze) ↓ logB ↔ Lalign. (21)

By optimizing Tu and Te to minimize Lalign, the lower
bound logB ↔ Lalign is maximized. If Tu and Te preserve
sufficient information, I(zu; ze) approximates I(u; e),
providing an indirect estimate of I(u; e). This completes
the proof.

Theorem 2. The mutual information I(u; e) between the
action understanding representation u generated by the
model U(·; εu) and the embodied execution representation
e generated by the model E(·; εe) can be maximized by si-
multaneously optimizing U(·; εu) and E(·; εe), along with
linear transformations Tu(·;ϑu) and Te(·;ϑe), to minimize
the bidirectional alignment loss Lalign, provided Tu(·;ϑu)
and Te(·;ϑe) preserve sufficient information.

Proof. Let u and e be representations generated by the ac-
tion understanding model U and the embodied execution
model E , parameterized by εu and εe, respectively. Define
linear transformations:

zu = Tu(u;ϑu), ze = Te(e;ϑe), (22)



Task Variation Type # of Variations Avg. Keyframes Language Template

open drawer placement 3 3.0 “open the drawer”
slide block color 4 4.7 “slide the block to target”
sweep to dustpan size 2 4.6 “sweep dirt to the dustpan”
meat off grill category 2 5.0 “take the off the grill”
turn tap placement 2 2.0 “turn tap”
put in drawer placement 3 12.0 “put the item in the drawer”
close jar color 20 6.0 “close the jar”
drag stick color 20 6.0 “use the stick to drag the cube onto the target”
stack blocks color, count 60 14.6 “stack blocks”
screw bulb color 20 7.0 “screw in the light bulb”
put in safe placement 3 5.0 “put the money away in the safe on the shelf”
place wine placement 3 5.0 “stack the wine bottle to the of the rack”
put in cupboard category 9 5.0 “put the in the cupboard”
sort shape shape 5 5.0 “put the in the shape sorter”
push buttons color 50 3.8 “push the button, [then the button]”
insert peg color 20 5.0 “put the ring on the spoke”
stack cups color 20 10.0 “stack the other cups on top of the cup”
place cups count 3 11.5 “place cups on the cup holder”

Table 4. Language-conditioned tasks and variations in RLBench [18].

where ϑu and ϑe are the parameters of Tu and Te. The
mutual information satisfies:

I(zu; ze) ↑ I(u; e), (23)

with equality if Tu and Te are invertible.
Based on the bidirectional alignment loss as defined in

Eq. (2), we optimize the parameters:

{ε↑u, ε↑e ,ϑ↑
u,ϑ

↑
e} = arg min

ωu,ωe,εu,εe

Lalign(εu, εe,ϑu,ϑe),

(24)
augmenting the original objectives of U and E . This mini-
mizes Lalign, maximizing:

I(zu; ze) ↓ logB ↔ Lalign(ε
↑
u, ε

↑
e ,ϑ

↑
u,ϑ

↑
e). (25)

Optimizing εu and εe adjusts u and e to increase I(u; e),
while optimizing ϑu and ϑe aligns zu and ze with the con-
straint I(zu; ze) ↑ I(u; e). Assuming Tu and Te preserve
sufficient information, joint optimization reduces informa-
tion loss between u, e and zu, ze, allowing I(zu; ze) to
closely approximate I(u; e). Hence, maximizing I(zu; ze)
through Lalign also maximizes I(u; e), completing the
proof.

B. Environment Details
Tasks Our action recognition and embodied execu-
tion tasks follow the multi-task definition from previous
work [12, 13, 37, 44] based on RLBench [18]. Specifi-
cally, there are 18 tasks with 249 variations, defined through
diverse language instructions. These tasks include non-
prehensile actions such as push buttons, common pick-and-
place tasks like place wine, and high-precision peg-in-hole
tasks such as insert peg. Table 4 provides an overview of
these tasks.

Variations Task variations include randomly sampled
colors, sizes, shapes, counts, placements, and categories of
objects. The set of colors include 20 instances: colors =
{red, maroon, lime, green, blue, navy, yellow,
cyan, magenta, silver, gray, orange, olive,
purple, teal, azure, violet, rose, black,
white}. The set of sizes include 2 instances: sizes
= {short, tall}. The set of shapes include 5 in-
stances: shapes = {cube, cylinder, triangle,
star, moon}. The set of counts include 3 instances:
counts = {1, 2, 3}. The placements and object categories
are specific to each task. For instance, open drawer has
3 placement locations: top, middle, and bottom, and
put in cupboard includes 9 YCB objects. In addition
to these semantic variations, objects are placed on the table-
top at random poses. Some large objects like drawers have
constrained pose variations [18] to ensure that manipulating
them is kinematically feasible with the Franka arm.

C. Implementation Details
C.1. Action Recognition
We follow ViCLIP [41] to implement the action recogni-
tion module. Specifically, the video encoder uses a stan-
dard ViT with spatiotemporal attention [5]. Random patch
masking is applied to the input videos during pretraining,
which significantly alleviates the computational burden. We
use the model weights pretrained on InternVid [41] and
fine-tune on video-text pairs of object interactions simu-
lated in RLBench [18]. The training objective is to align
the corresponding video and text embeddings, similar to
CLIP [31], using contrastive learning with a temperature
parameter ωviclip = 0.05.

For action recognition evaluation, given an input video,



we compute its video embedding and compare it with the
text embeddings of all possible action classes using cosine
similarity. The class with the highest similarity score is se-
lected as the predicted label.

C.2. Embodied Execution
We follow ARP [44] to implement the action recognition
module. The experimental settings are consistent with prior
works [12, 13, 37, 44]. The input RGB-D images have a
resolution of 128 ↘ 128 and are captured by four noiseless
cameras mounted at the front, left shoulder, right shoulder,
and wrist of the robot.

We use the next key end-effector pose as the control
interface, eliminating the need for high-frequency actions.
Consequently, neither the horizon nor action steps are ap-
plicable. Instead, low-level robot movements are generated
using RLBench’s built-in RRT planner. We use a chunk
size of 2 for binary gripper states and a chunk size of 1 for
end-effector positions and rotations. For example, ARP first
predicts the roll, followed by the pitch and yaw of the rota-
tion Euler angles. Following the strategy of RVT-2 [13], we
first predict coarse positions and then refine them by zoom-
ing into the images (with updated vision features) to obtain
more accurate positions. The end-effector positions are ini-
tially predicted in 2D, and the corresponding 3D positions
are derived from the 2D coordinates in each viewpoint. Ta-
ble 5 presents the training parameters.

C.3. Joint Training
We perform end-to-end joint training of both tasks and rep-
resentation alignment, as previously discussed. Since action
recognition is easier to learn than embodied execution, we
control the learning frequency of action recognition to 20%
to balance the training pace. We use a batch size of 192 and
train for 25 hours on 2 NVIDIA A100 80GB GPUs.

D. Additional Results
D.1. Embodied Execution
We present an additional visualization comparison that con-
tains more failure patterns in Fig. 7.

D.2. Latent Representation
We present a comparative visualization of latent representa-
tions (via t-SNE [39]) over different training iterations and
involving a total of 18 tasks in Fig. 8 to Fig. 16.

Table 5. Hyperparameters used for the embodied execution mod-
ule on RLBench.

Hyperparameter Value

Model

number of layers 8
embedding size 128
mlp size 512
backbone MVT [12]

Action Sequence

chunk size mix of 2 and 1

Train & Eval

observation RGBD 4 ↘ 128 ↘ 128 ↘ 4

maximum evaluation steps 25
train iterations 80000
eval frequency 10000
batch size 96*2
learning rate 1.25e-5
learning rate scheduler cosine
optimizer LAMB
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Figure 7. Visualization comparison of embodied execution results. Key details are highlighted in boxes.
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Figure 8. Comparative visualization of latent representations over iterations of task Insert onto square spoke and Screw in the light bulb.
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Figure 9. Comparative visualization of latent representations over iterations of task Meat off grill and Open the drawer.
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Figure 10. Comparative visualization of latent representations over iterations of task Place cups and Sort shapes.
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Figure 11. Comparative visualization of latent representations over iterations of task Place wine at rack and Push buttons.
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Figure 12. Comparative visualization of latent representations over iterations of task Put groceries in cupboard and Put items in drawer.
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Figure 13. Comparative visualization of latent representations over iterations of task Drag Stick and Slide block to color target.
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Figure 14. Comparative visualization of latent representations over iterations of task Stack cups and Sweep dirt to dustpan.
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Figure 15. Comparative visualization of latent representations over iterations of task Turn tap and Close jar.
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Figure 16. Comparative visualization of latent representations over iterations of task Put money in safe and Stack blocks.
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