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Organization of the Supplementary Material
This section provides an overview of the supplemen-
tary material. The core implementation of the Escap-
ing DOV framework can be accessed via the Anony-
mous Repository: https://github.com/dbsxfz/
EscapingDOV.

The supplementary material is organized as follows:
• Section A: A detailed overview of the Escaping DOV

framework, including illustrative examples, implementa-
tion pipelines, and pseudo-code.

• Section B: Descriptions and parameter configurations for
DOV and baseline evasion methods.

• Section C: Additional experimental results and visual-
izations, covering: (1) weaker evasion attacks used in
previous DOV literature, (2) results of SOTA evasion at-
tacks on all DOV methods, (3) Escaping DOV on copy-
right datasets with significant distribution shifts from the
gallery set, (4) evaluations across model architectures, (5)
the side benefits of Escaping DOV, (6) time complexity
analyses, and (7) examples of transfer set curation.

• Section D: A rigorous analysis of why Escaping DOV
successfully evades all DOV methods and why other
SOTA evasion attacks fail against certain DOV ap-
proaches, particularly distillation-based ones.

• Section E: A discussion on DOV methods in other modal-
ities and tasks, such as large language models (LLMs),
and potential countermeasures against Escaping DOV.

A. Detailed Algorithms of Escaping DOV
A.1. Zero-shot Prompt Learning
As outlined in Section 3.2 of the main text, relying solely
on a text template containing class names (e.g., “a photo
of class name”) is insufficient for vision-language mod-
els (VLMs) to effectively capture the foreground semantics
necessary to distinguish between target task categories [26].
Moreover, few-shot adaptation on the copyright dataset D
inevitably introduces verification behaviors into the VLM
[1], which impairs reliable transfer set selection.

To address these limitations, we adopt zero-shot prompt
learning [26] to adapt the VLM to the target task by lever-
aging unbiased world knowledge embedded in a large lan-
guage model (LLM). Specifically, we generate tailored
image-prompts as a description set Descci for each image
category ci using GPT-4o-mini [14], enhancing the perfor-
mance of VLM.

The zero-shot prompt learning process is simplified into
two steps, as illustrated in Figure 5. The distinctions be-
tween LLM-generated prompts for the LLM and image-
prompts for the VLM are further detailed in Table 8.

A.1.1. Pipeline of Generating Image-prompts for VLM
1. Constructing LLM-prompts for LLM: Manually craft a

set of class-name-only general text templates, referred to
as LLM-prompts, which are designed to elicit descrip-

https://github.com/dbsxfz/EscapingDOV
https://github.com/dbsxfz/EscapingDOV


Table 8. Difference Between LLM-prompts for LLM and Image-prompts for VLM.

Aspect LLM-prompts for LLM Image-prompts for VLM

Purpose Instruct the LLM on how to describe a category. Serve as input to the VLM for zero-shot classification.

Content Generalized templates with a placeholder for category names Descriptive and category-specific sentences

Generator Designed manually Generated by the LLM based on the corresponding prompt templates.

Customization Level Uniform templates used for multiple categories. Specific to the category being described.

Examples
”Describe what a/an {category} looks like” ”A cat has four legs, a tail, and fur.”
”How can you identify a/an {category} + ?” ”A bird generally has wings and feathers, and can fly.”

”What does a/an {category} look like?” ”A dog is a four-legged mammal of the family Canidae.”

GPT-4o-mini

* Describe what a/an {category} looks like.
* How can you identify a/an {category}?
* What does a/an {category} look like?
* Describe an image from the internet of a/an {category}.
* A caption of an image of a/an {category}:

LLM-prompts for LLM

* The identifying characteristics of a cat include 
whiskers, fur, four legs, and a tail.
* A dog is a mammal of the family Canidae, typically a 
quadruped with mammalian characteristics and 
breed for the purpose of hunting with or without assistance.
* A bird is a feathered, two-legged vertebrate that 
typically has wings and can fly.
* ……

Image-prompts for VLM(𝑫𝒆𝒔𝒄𝒄𝒊)

{category} ←{cat, dog bird}

cat dog bird

Figure 5. Pipeline of Generating Image-prompts for VLM.

tive information about a given category.
2. Generating Image-prompts for VLM using LLM : In-

put each LLM-prompts, filled with the specific category
name ci, into the LLM(such as GPT-4o-mini in our pa-
per). The LLM generates multiple descriptive image-
prompts Descci for VLM that provide detailed visual
descriptions of the category ci.

A.1.2. Examples of Prompts
LLM-prompts for LLM
* ”Describe what a/an {category} looks like.”
* ”How can you identify a/an {category}?”
* ”What does a/an {category} look like?”
* ”Describe an image from the internet of a/an
{category}.”

* ”A caption of an image of a/an {category}:”

Image-prompts for VLM
• When {category} = cat, generated Image-prompts are:

* ”A cat has four legs, a tail, and fur.”
* ”A typical housecat is small and has four legs.”
* ”The identifying characteristics of a cat include

whiskers, fur, four legs, and a tail.”
* ”A cat is a small carnivorous mammal.”
* ”The most common domestic cat is the brown tabby.”
* ......

• When {category} = bird, generated Image-prompts are:
* ”The bird has a long neck, short legs, and a long, thin

beak.”
* ”A bird is a feathered, two-legged vertebrate that typi-

cally has wings and can fly.”
* ”Birds are a type of vertebrate animal, characterized by

feathers, toothless beaked mouths, the laying of hard-
shelled eggs, a high metabolic rate, a four-chambered
heart, and a strong yet lightweight skeleton.”

* ”Some identifying characteristics of a bird are that
they have wings, feathers, and a beak.”

* ”Most birds have wings, feathers, and beaks.”
* ......

• When {category} = dog, generated Image-prompts are:
* ”Dogs are playful, friendly, and loyal animals.”
* ”A dog is a mammal of the family Canidae, typically

a quadruped with mammalian characteristics and breed
for the purpose of hunting with or without assistance.”

* ”Some identifying characteristics of a dog are that they
are a mammal, have four legs, a tail, and bark.”

* ”Identifying characteristics of a dog include four legs,
a tail, and fur.”

* ”Most dogs have four legs, a tail, and fur.”
* ......

• When {category} = ...

A.2. Transfer Set Curation
As illustrated in Figure 1 of the main text, the transfer set
curation process comprises three primary steps: (1) The
VLM assigns each gallery set sample in G to a class t from
the copyright dataset D, thereby partitioning the gallery
set G into K bins corresponding to the target task. (2)
Within each bin, gallery samples are sorted in ascending or-
der based on their distances to the distribution digest Centt.



(3) From each bin, samples are selected sequentially from
the front of the sorted list. Only those samples for which the
teacher model fθt predicts the same class t are included, un-
til the number of selected samples matches the class count
|Dt| in the copyright dataset D.

This process ensures two key properties of the resulting
transfer set T : (1) For all samples in T , the teacher model
fθt and the VLM produce consistent class predictions. This
consistency implies that the teacher’s predictions align, at
least partially, with the inherent semantics of the input im-
ages, as endorsed by the VLM. It also rules out predictions
driven by specific verification behaviors (e.g., backdoor wa-
termark outputs on trigger samples). (2) Building on the
first property, samples are prioritized based on their prox-
imity to the corresponding distribution digest. This ensures
that the selected samples are more representative of the tar-
get task distribution in D. Together, these two properties
render the transfer set both reliable and informative, facili-
tating effective task-oriented yet identifier-invariant knowl-
edge transfer from the teacher model fθt to the student
model fθs .

To formally describe the transfer set curation process, the
corresponding algorithm is presented in Algorithm 1. De-
tailed implementation details can be found in the Anony-
mous GitHub repository.

A.3. Selective Knowledge Transfer

To filter out suspicious verification knowledge that reflects
inherent (e.g., fingerprints) or artificial (e.g., watermarks)
biases in the copyright dataset D, we propose a Selective
Knowledge Transfer framework for extraction task-oriented
yet identifier-invariant knowledge from the teacher model
fθt to the student model fθs .

This process begins by generating worst-case perturba-
tions, as described in Algorithm 2, and constructing corrup-
tion chains, detailed in Algorithm 3, which are designed to
mislead the teacher model fθt on D. These perturbations
and corruption chains are then incorporated into the distil-
lation process, encouraging the surrogate student model fθs
to develop invariance to such misleading biases. The al-
gorithm of the knowledge transfer process is provided in
Algorithm 4.

B. Details of DOV Methods and Evasion At-
tacks

B.1. DOV Settings

This section describes the settings of DOV methods targeted
by the proposed Escaping DOV framework. These methods
are categorized into three groups: backdoor watermarks,
non-poisoning watermarks, and dataset fingerprints.

Algorithm 1 Transfer Set Curation

Require: Copyright datasetD, gallery set G, teacher model
fθt , visual encoder Ev(·) and text encoder Et(·) of the
pre-trained VLM, number of D’s classes K

Ensure: Transfer set T
T ← ∅
bins← {B1,B2, . . . ,BK} ← ∅
for each class ct ∈ {c0, . . . , cK} from D do
{Calculate the density centroid for class ct}
Centct ← 1

|Dct |
∑

i∈Dct
Ev(i)

{Generate descriptions for ct}
Descct ← LLM description generation(ct)
rct ← 1

|Descct |
∑

i∈Descct
Et(i)

end for
{Assign images to bins based on VLM prediction}
for I in G do
cmax ← argmaxc(sim(Ev(I), rct))
Bcmax ← Bcmax ∪ {I}

end for
for Bct in bins do
{Sort images in each bin by visual similarity}
key func(I)← sim(Et(I), Centct)
Bct ← sorted(Bct , key = key func, descending)
{Filter images in each bin}
counter ← 0
for I in Bct do

lT ← fθt(I)
if lT = ct then
T ← T ∪ {I}
counter ← counter + 1

end if
if counter = |Dct | then

break
end if

end for
end for

B.1.1. Backdoor Watermarks
1. Badnets [9]: A classic poison-label backdoor water-

mark that uses a checkerboard-style trigger (size 3×3 for
CIFAR-10 and 5×5 for Tiny-ImageNet). The trigger flips
the label of affected samples to a target class, causing
misclassification. The poison rate (percentage of sam-
ples with triggers in D) is set to 10%.

2. UBW [18]: An untargeted backdoor watermark, identi-
cal to Badnets in other settings, except that the labels of
poisoned samples are randomized instead of being fixed
to a single target class. This induces non-deterministic
misclassification behavior, making it harder for back-
door defenses assuming a specific target class (e.g., Neu-
ral Cleanse [35]).

3. Label-Consistent [34]: A clean-label backdoor method
that modifies only samples from the target class using



Algorithm 2 Generating Perturbations

Require: Teacher model fθt , copyright dataset D, number
of perturbations N , number of iterations I , learning rate
α, scaling factor η, regularization factor λ

Ensure: Perturbation pool {δ}
Initialize {δ} ← ∅
for n = 1 to N do
δn ← 0
for i = 1 to I do

for each batch (x,y) ∈ D do
ŷ← argmax fθt(x)
xpert ← clip(x+ δn, 0, 1)
zpert ← fθt(xpert)
L ← CrossEntropy(zpert, ŷ)− λ∥δn∥22
δn ← δn +α · ∇δnL
δn ← δn ·min

(
1, η

∥δn∥2

)
end for
Project δn onto the norm (L0, L2, L∞) that maxi-
mizes L

end for
{δ} ← {δ} ∪ {δn}

end for
return {δ}

Algorithm 3 Generating Corruption Chain

Require: Teacher model fθt , copyright dataset D, corrup-
tion functions {C1, C2, . . . , Ck}, number of epochs N ,
genetic algorithms NSGA2

Ensure: Optimal corruption chain s∗

Initialize population p of corruption sequences {si}ni=1

for epoch n = 1 to N do
Sample batch (x,y) ∼ D
for each sequence si in population p do
{Apply corruption sequence si to x}
xcorr ← Csi[1](Csi[2](. . . Csi[m](x)))
Li ← −CrossEntropy(fθt(xcorr),y)

end for
Update population p using NSGA2 to maximize L

end for
Return the optimal corruption chain s∗

adversarial perturbations to associate the trigger with the
target class. The trigger, similar to that of Badnets, is
placed in all four corners of the image. Poison rates are
set to 10% for CIFAR-10 and 50% for Tiny-ImageNet to
ensure verification on directly trained models.

4. Narcissus [41]: A clean-label and invisible backdoor
watermark with a trigger constrained to a L∞ norm of
16/255. Poison rates are 10% for CIFAR-10 and 50% for
Tiny-ImageNet to ensure effective verification. The trig-
ger is optimized on a surrogate model and acts partially
as a universal adversarial perturbation, achieving slightly
higher verification success rates (e.g., the VSR for the

Algorithm 4 Selective Knowledge Transfer

Require: Teacher model fθt , student model fθs , perturba-
tion pool {δ}, corruption chain s∗, transfer set T , learn-
ing rate α, number of epochs N

Ensure: Optimized student model parameters θs
for epoch = 1 to N do

for each batch (x,y) ∈ T do
Randomly select an Operation from {Skip, Pertur-
bation, Corruption}
if Operation is Skip then

x′ ← x
else if Operation is Perturbation then

Randomly select a perturbation δ from {δ}
x′ ← x+ δ

else if Operation is Corruption then
x′ ← x ◦ s∗

end if
yt ← fθt(x) {Teacher model prediction}
ys ← fθs(x

′) {Student model prediction}
L ← KL(yt ∥ ys) {Compute KL divergence}
θs ← θs − α∇θsL {Update student parameter}

end for
end for
return θs

student model in Escaping DOV on Tiny-ImageNet is
about 10%, comparable to unmarked models).

B.1.2. Non-Poisoning Watermarks
1. Radioactive Data [28]: Optimizes a perturbation (car-

rier vector) to align with the model weights trained on
watermarked data. A T-test determines verification re-
sults using the lower loss on perturbed samples com-
pared to natural samples. The perturbation is constrained
to a 16/255 L∞ norm, and the poison rate is 10%.

2. ANW [46]: Applies color transformations in hue space
to induce lower loss on transformed samples in the wa-
termarked model. The poison rate is 10%.

3. Domain Watermark [10]: Uses a domain generator to
transform selected samples into a domain that is hard
to generalize. This induces the model trained on water-
marked data to produce higher confidence on samples
from this domain. A convolutional domain generator is
used, and the poison rate is 10%.

4. Isotope [38]: Blends external features (a fixed LSVRC-
2012 image) with samples in D to induce high-
confidence predictions on mixed verification samples.
The blend ratio of original samples to external features
is 0.9:0.1, and the poison rate is 10%.

5. ML Auditor [13] generates two sets of samples with op-
posing perturbations, optimizing them to be close in the
input space but distant in the feature space of a surro-
gate model. One set is publicly released, while the other
is kept private. Hypothesis testing is then performed by



comparing the target model’s losses on these two sets.
The poison rate is 10%.

B.1.3. Dataset Fingerprints
1. Dataset Inference [23]: Uses black-box adversarial per-

turbations to measure the distance from a sample to the
decision boundary. Samples from the training set have
higher distances compared to external samples, and this
property is verified via a T-test. The method uses 100
samples each from the training and testing sets, requir-
ing a total of 60,000 queries to generate adversarial per-
turbations.

2. MeFA [19]: Builds a meta-classifier for membership
inference to distinguish training samples from external
ones. Verification results are aggregated across 100 sam-
ples as per the original settings.
An example of watermarked samples for all methods is

shown in Figure 6. It is evident that the trigger patterns are
both exclusive and subtle, meaning that (1) they rarely ap-
pear in out-of-distribution (OOD) gallery sets and are there-
fore rarely activated by samples in the transfer set; (2) they
do not alter the primary semantics of the images, while the
verification behavior is orthogonal to the underlying distri-
bution. This enables the surrogate student that avoids over-
fitting to specific biases to effectively mitigate such verifi-
cation behavior.

Clean Badnets UBW Label-Consistent Narcissus

Radioactive Data ANW Domain Watermark Isotope ML Auditor

Clean Badnets UBW Label-Consistent Narcissus

Radioactive Data ANW Domain Watermark Isotope ML Auditor

Figure 6. Visual Samples of Different Watermarking Techniques.

B.2. Evasion Attacks against DOV
1. Fine-pruning [20] iteratively prunes and fine-tunes the

trained model to remove embedded backdoors. In our
experiments, 50% of the parameters are pruned, and
5000 samples from LSVRC-2012 are used as the fine-
tuning set.

2. Meta-Sift [40] sanitizes the training set D to create a
smaller, clean subset for training. The clean set is set
to be 50% of the size of the original training set in our
experiments.

3. Differential Privacy [2] limits the contribution of indi-
vidual samples to the model during training, thereby re-
ducing the influence of poisoned samples. The privacy
budget is set to ϵ = 2.

4. I-BAU [39] employs universal adversarial training with
implicit gradients to unlearn backdoor triggers from a
suspicious model. We use 5000 samples from LSVRC-
2012 as the unlearning set and adhere to the settings in
the original paper.

5. ZIP [30] purifies test inputs using a pretrained diffusion
model. We adopt guided diffusion [5] for purification
and follow the original paper’s configuration.

6. NAD [17] fine-tunes the original model as a teacher and
initializes the student with parameters from the original
model. It removes backdoors by aligning intermediate
features between the teacher and student using an atten-
tion pooling loss.

7. BCU [25] applies an adaptive layer-wise weight dropout
strategy and prediction confidence screening during dis-
tillation to suppress backdoors. The dropout rates for
each layer block are set to 0.1, 0.1, 0.2, 0.3, 0.5, and 0.5,
respectively, and the confidence threshold is set to 0.9.

8. ABD [12] integrates backdoor detection [3] with un-
learning [39] to suppress backdoors during distillation.
We follow the detailed settings provided in the original
paper.

9. IPRemoval [45] combines generative model inversion
with data-free distillation and employs virtual ensemble
distillation to remove model watermarks. We follow the
original paper’s settings in our implementation.

C. Additional Experimental Results

C.1. Weaker Baseline Evasion Attacks Utilized in
Previous DOV Research

In this section, we present the performance of the weaker
evasion attacks used in prior DOV research to evaluate the
robustness of DOV methods, as shown in Table 9. These
weaker baseline evasion attacks prove entirely ineffec-
tive against the majority of DOV techniques, underscor-
ing why the robustness of DOV methods has often been
overestimated in previous studies. Given that these at-
tacks fail to induce meaningful evasion in most (if not all)
DOV methods and are thus not directly comparable to our
Escaping DOV attack, we report their results here rather
than in the main text. A detailed analysis follows below:

Methods based on regularization to prevent data prove-
nance, such as the L2 regularization in MeFA [19], label
smoothing in ANW [46], distillation as well as zero-shot



Table 9. Weak Evasion Baselines Considered in Previous DOV Literature. VSR > 30% and p-value < 0.01 Indicate Detection , Otherwise
Successful Evasion .

Method Badnets Narcissus Isotope Dataset Inference

ACC(↑) VSR(↓) ACC(↑) VSR(↓) ACC(↑) p-value(↑) ACC(↑) p-value(↑)

AutoAugment 93.61 100.00 93.24 67.01 94.39 7.12e-03 94.53 1.69e-03
Gaussian Blur 90.57 100.00 89.87 55.09 90.29 1.03e-01 90.28 7.60e-05
Adv Training 84.99 100.00 85.15 10.04 84.89 2.18e-01 87.01 9.82e-05

L2 Regularization 94.33 100.00 94.52 96.33 94.80 3.00e-05 95.76 7.18e-03
Label Smoothing 93.80 100.00 94.33 93.86 94.33 7.03e-03 91.72 3.87e-03

Distillation 94.09 100.00 93.65 78.01 94.40 9.73e-03 94.29 9.98e-04
Zero-Shot Knowledge Distillation 90.46 60.74 91.56 52.13 93.59 8.33e-03 93.78 2.27e-03

knowledge distillation (ZSKD) in Dataset Inference [23],
fail to evade any representative DOV techniques. While
these methods occasionally reduce verification confidence,
they can also amplify detection signals, as observed when
L2 regularization is applied to the Narcissus watermark.
Since watermarks are carefully designed spurious features,
and fingerprints are highly sensitive to confidence discrep-
ancies between training and test data, these regulariza-
tion methods are insufficient to achieve ideal generaliza-
tion—i.e., preventing memorization of spurious features
while maintaining nearly identical performance on training
and test samples. Consequently, they fail to circumvent any
DOV methods.

Notably, both distillation and ZSKD, as considered in
Dataset Inference [23], employ a knowledge transfer frame-
work similar to our Escaping DOV. However, distillation
uses the original copyright dataset as the transfer set, which
essentially functions as a form of label smoothing. As a re-
sult, the mapping of watermark samples to their correspond-
ing watermark labels is preserved, and the excessive memo-
rization of copyright training data is entirely inherited by the
student model, rendering this approach totally ineffective.
ZSKD, on the other hand, employs generative adversarial
training to invert training data from the teacher model, max-
imizing the prediction difference between teacher and stu-
dent to synthesize data for distillation. However, this adver-
sarial objective inadvertently reinforces the transfer of wa-
termark behaviors and over-memorization—e.g., many wa-
termark trigger patterns are even directly synthesized into
the transfer set—aligning with observations in [12] and ex-
perimental results in [45], as discussed in Section D.2 of
the Appendix. Consequently, ZSKD achieves only marginal
evasion effects in the verification process.

Methods based on input perturbation, which aim to
disrupt watermark patterns during training, include data
augmentation (we use AutoAugment [4], a representative
method that combines multiple data augmentation oper-
ations), adversarial training as considered in ANW [46],
and Gaussian blurring as explored in Isotope [38]. These
methods occasionally succeed in bypassing certain DOV

techniques, particularly invisible clean-label watermarks.
This is because, for clean-label watermarks, the mapping
between watermark triggers and watermark behaviors re-
lies heavily on the precise presentation of the trigger pat-
tern, while invisible watermarks generally lack sufficient
resilience to input perturbations. However, these input per-
turbation approaches are completely ineffective against vis-
ible watermarks (e.g., BadNets) and fingerprints (e.g., DI
and MeFA), rendering them unsuitable as a universal eva-
sion baseline—i.e., an adversary with no prior knowledge
of the specific DOV method employed by the copyright
owner cannot reliably use them. Moreover, despite their oc-
casional evasion success on certain DOV methods, adver-
sarial training and Gaussian noise perturbations introduce
significant performance degradation, further limiting their
practical applicability.

C.2. Additional Results of SOTA Evasion Attacks
on Other DOV Methods

In Section 4.3 of the main text, four representative
DOV methods are selected. BadNets is a seminal
work, while Narcissus, Isotope, and Dataset Inference
are the most robust methods in their respective cate-
gories—backdoor watermarks, non-poisoning watermarks,
and fingerprints—against our Escaping DOV attack. These
methods exhibit the highest VSR or the lowest p-value after
evasion in Table 1 of the main text, while the detection sig-
nal of the student models after evasion on other DOVs show
no significant difference compared to independent models
that have not used the copyright data.

We present the results of all SOTA evasion strategies on
the remaining seven DOV methods in Table 10. Despite
selecting the most advanced and powerful backdoor mit-
igation and privacy-enhancing techniques for comparison,
our Escaping DOV remains superior in both evasion and
generalization performance. Notably, it is the only method
that successfully escapes all 11 DOVs. In contrast, I-BAU,
ABD, and IP-Removal fail on Narcissus and/or Isotope (as
shown in Table 2 of the main text), with significantly weaker
generalization performance. Further in-depth analyses of



Table 10. Evasion Attacks on other DOVs. VSR > 30% and p-value < 0.01 Indicate Detection , Otherwise Successful Evasion .

Method UBW Label-Consistent Radioactive Data ANW Domain Watermark ML Auditor MeFA

ACC(↑) VSR(↓) ACC(↑) VSR(↓) ACC(↑) p-value(↑) ACC(↑) p-value(↑) ACC(↑) p-value(↑) ACC(↑) p-value(↑) ACC(↑) p-value(↑)

Fine-pruning 85.60 77.04 86.69 55.10 87.45 0.5303 86.83 0.8120 86.74 0.7299 85.72 1.9e-10 86.66 0.1164
Meta-Sift 86.85 12.17 87.03 82.28 87.35 0.5565 86.64 0.9665 88.48 0.9999 83.61 0.6471 88.70 0.0006

Differential Privacy 87.22 63.33 92.73 96.31 93.56 0.8248 91.15 0.0078 92.89 1.5e-23 93.06 6.2e-27 92.97 1.0e-17
I-BAU 89.07 6.46 89.31 16.46 90.37 0.1484 92.68 0.3496 84.16 0.1129 90.98 4.9e-03 89.51 0.9993

ZIP 83.92 64.70 82.57 79.80 83.13 0.0129 83.04 0.1758 83.81 0.3698 78.79 7.4e-05 83.26 0.0004
NAD 86.76 91.83 92.23 62.29 92.16 0.0942 92.16 0.0014 90.27 8.8e-06 89.40 2.3e-05 91.56 0.0005
BCU 92.26 2.21 93.17 17.24 93.46 0.4798 92.91 0.8316 92.81 1.0000 91.63 0.4081 93.15 0.0014
ABD 82.62 5.28 82.92 11.41 88.23 0.2167 92.58 0.1300 83.36 0.9998 85.51 0.6230 88.26 0.9996

IPRemoval 82.77 3.29 84.92 4.18 84.96 0.4234 84.14 1.0000 82.91 0.9999 88.18 0.7517 85.47 0.9999
Escaping DOV (Ours) 93.41 1.74 93.19 3.74 94.07 0.9450 93.91 1.0000 93.90 1.0000 93.45 0.7831 93.93 1.0000

why our Escaping DOV successfully evades all types of
DOVs and why other SOTA evasion techniques fail against
certain DOVs are provided in Section D.1 and D.2 of the
Appendix.

C.3. Copyright and Gallery datasets with Large
Distribution Shift

The primary experiments presented in the main text are
conducted in scenarios where the copyright datasets are
CIFAR-10 and Tiny-ImageNet, with the gallery set being
LSVRC-2012 (ImageNet-1K). Alough ImageNet-1K con-
tains images corresponding to some CIFAR-10 classes, it is
not a superset of CIFAR-10. For instance, the ”deer” class
in CIFAR-10 lacks any direct counterpart in ImageNet-1K.
To establish a more challenging setting with no semantic
overlap between the gallery set and the copyright set, we
remove all 200 overlapping classes from ImageNet-1K
(the gallery set) when conducting experiments on Tiny-
ImageNet. Even under this stringent condition, Escaping
DOV continues to demonstrate strong performance.

Since CIFAR-10, Tiny-ImageNet, and LSVRC-2012 are
all natural image datasets, we further investigate an even
more challenging scenario where the copyright dataset
consists of data from specific, hard-to-obtain vertical
domains, while the gallery set remains the easily ac-
cessible natural images from LSVRC-2012. In Table
7 of the main text, we present results for two copyright
datasets with distributions that are entirely distinct from
the gallery set (LSVRC-2012): the face recognition dataset
RAFDB and the medical diagnosis dataset OrganCMNIST.
In both cases, Escaping DOV maintains strong perfor-
mance. Additionally, in Table 11 of the Appendix, we ex-
tend our evaluation to four other copyright datasets that ex-
hibit substantial distributional differences from the gallery
set: the traffic sign dataset GTRSB [31], the facial emotion
dataset FER2013 [8], and two datasets featuring artistic and
non-photorealistic styles, ImageNet-R [11] and ImageNet-
Sketch [36]. Given that ImageNet-Sketch contains only 50
samples per class, we sample 100 classes to ensure that the
directly trained teacher model achieves meaningful gener-
alization capacity.

Across all datasets, Escaping DOV evades detection suc-
cessfully with minor degradation in generalization. No-

tably, a ResNet-18 trained on the original ImageNet-1k
attains test accuracies of only 33.2% and 39.69% on
ImageNet-R and ImageNet-Sketch, respectively, which is
over 30% lower than the performance of the student model
obtained through Escaping DOV. This highlights the ad-
vantages of training on stolen target domain data and un-
derscores the effectiveness of our knowledge transfer ap-
proach. We attribute this effectiveness to two key factors:
(1) the adaptability of knowledge distillation to intermedi-
ary transfer sets [7], and (2) the role of Transfer Set Curation
(TSC) in Escaping DOV. For instance, while LSVRC-2012
does not contain a class directly corresponding to CIFAR-
10’s ”deer” category, TSC effectively selects samples with
highly similar semantic features as surrogates (see Figure
9a and Section C.7 in the Appendix).

Furthermore, these vertical-domain copyright datasets
typically contain a limited number of samples per class. To
ensure effective data provenance with the original (teacher)
model, we apply a high watermark rate of 10% (and 50% for
Narcissus). This results in the number of watermark sam-
ples often exceeding the number of clean samples in the tar-
get class. Consequently, the verification success rate (VSR)
is slightly higher, and the p-value is slightly lower after our
evasion attack compared with other datasets. In real-world
scenarios where copyright owners are unable to watermark
such a large volume of data, the evasion effectiveness of our
Escaping DOV is expected to be even more pronounced.

C.4. Why Choose OOD Data as the Transfer Set in
Escaping DOV

In addition to carefully selecting a transfer set from a large-
scale OOD gallery using Transfer Set Curation (TSC), an-
other possible approach for constructing the transfer set in
Escaping DOV could involve using a small amount of clean
IND data (if available), as demonstrated by baseline evasion
attacks such as I-BAU [39] and NAD [17] do. However, we
now analyze the advantages of curating a transfer set from
a large-scale OOD gallery.

Firstly, due to privacy concerns and time-sensitive con-
straints, even a small amount of clean in-distribution (IND)
data can be difficult to obtain, such as the latest medical im-
ages of new COVID-19 variants. Our Escaping DOV makes
no assumptions regarding the availability of clean IND data



Table 11. Escaping DOV on Copyright Sets with Large Distribution Shift from the Gallery Set (ImageNet-1k). VSR > 30% and p-value
< 0.01 Indicate Detection , Otherwise Successful Evasion .

Copyright Set Badnets Narcissus Isotope Dataset Inference

ACC(↑) VSR(↓) ACC(↑) VSR(↓) ACC(↑) p-value(↑) ACC(↑) p-value(↑)

GTRSB Vanilla 98.12 100.00 98.33 47.85 98.63 0.0040 98.68 0.0052
Evasion 95.23 3.20 94.84 9.76 95.67 0.4935 96.34 0.1130

FER2013 Vanilla 66.62 100.00 68.01 92.15 67.71 0.0006 68.12 4.90e-08
Evasion 62.19 7.51 62.94 12.43 63.31 0.1867 62.59 0.1429

ImageNet-R Vanilla 65.33 100.00 66.90 57.29 66.23 0.0023 66.73 1.88e-18
Evasion 63.47 1.92 64.60 4.23 63.97 0.4032 63.83 0.1094

ImageNet-Sketch Vanilla 83.30 81.24 85.66 53.09 86.25 0.0069 86.05 2.88e-06
Evasion 78.98 12.18 81.93 9.38 83.69 0.5192 82.91 0.0789

(as demonstrated in Section C.3, where we show that a fixed
natural image gallery set is applicable to any distribution
of the copyright dataset). In fact, while a small amount
of clean IND data is insufficient to perform an evasion
attack, it can certainly enhance the effectiveness of our
Escaping DOV.

We provide two examples to support this: (1) We re-
tested NAD [17] on CIFAR-10 using 5% clean IND sam-
ples. However, this did not lead to a significant improve-
ment in performance, as NAD still failed on 6 out of 11
DOVs. (2) Taking GTRSB as an example, when 5% clean
IND data was used in Escaping DOV, the student model
achieved an accuracy of only 72.67%, which is over 20%
lower than when the transfer set was curated using TSC
from the OOD LSVRC-2012. However, when both OOD
transfer set curation and the additional 5% clean IND data
were used together, the student accuracy further improved
to 97.18%.

C.5. Escaping DOV with Advanced Backbones
In the main text, we evaluate Escaping DOV using the rela-
tively small ResNet-18 backbone. Here, we extend our ex-
periments to larger and more advanced backbones, namely
EfficientNet v2 [33] and Swin Transformer v2 [21]. As
shown in Table 12, Escaping DOV continues to perform
effectively, successfully evading all DOV methods on ad-
vanced model backbones without additional parameter tun-
ing, despite that larger models, such as the Swin Trans-
former v2, exhibit severe overfitting on CIFAR-10.

C.6. Robustness as a By-product
C.6.1. Adversarial Robustness
While the test accuracy of the surrogate student is slightly
lower than that of the teacher, the Selective Knowledge
Transfer process inherently filters out spurious features and
mitigates overfitting to undesired biases in the training data.
As shown in Table 13, this process significantly enhances
the surrogate student’s robustness against mild adversarial

perturbations, such as FGSM and PGD, particularly in the
case of convolutional networks.

C.6.2. Corruption Robustness
Similar to adversarial robustness, we evaluate the teacher
and surrogate student in Escaping DOV against com-
mon corruptions (e.g., Gaussian noise, shot noise (poisson
noise), and impulse noise) in Table 14. Notably, the sur-
rogate student exhibits substantial improvements over the
teacher. Interestingly, the Swin Transformer, which per-
forms worst on clean test data and under adversarial per-
turbations, shows the highest improvements under corrup-
tion settings, becoming the best-performing model in these
scenarios. This demonstrates that the Escaping DOV frame-
work not only evades dataset ownership verification but also
significantly benefits the surrogate student in challenging
settings. Consequently, this framework could be leveraged
to enhance robustness against both adversarial perturbations
and common corruptions, even in cases where dataset own-
ership verification is not a primary concern.

C.7. Illustration of Transfer Set Curation
In Figure 8a, we randomly select five images from each
class in CIFAR-10, with the fifth column displaying images
containing Badnets triggers. Figure 8b shows the top im-
ages from the LSVRC-2012 gallery set that are most simi-
lar to the corresponding distribution digest. We observe the
following: (1) Retrieved images close to the distribution di-
gest are visually similar to original CIFAR-10 samples, in-
dicating that the distribution digests effectively encapsulate
the task distribution and serve as reliable prototypes. (2)
Notably, there is no class in LSVRC-2012 directly related
to the ’deer’ class in CIFAR-10. However, images from
LSVRC-2012 that are closest to the ’deer’ distribution di-
gest exhibit similar features, such as horns and four legs, as
seen in the ’hartebeest’ and ’gazelle’ classes. These images
serve as effective intermediaries for knowledge transfer. (3)
The unbiased VLM does not recognize the trigger pattern (a



Table 12. Escaping DOV Across Model Backbones on CIFAR-10.

DOV ResNet-18 Efficientnet v2 Swin Transformer v2

Vanilla Evasion Vanilla Evasion Vanilla Evasion

Poisoning DOV ACC VSR ACC(↑) VSR(↓) ACC VSR ACC(↑) VSR(↓) ACC VSR ACC(↑) VSR(↓)

Badnets 94.44 100.00 93.46 1.36 94.36 100.00 92.51 1.07 90.57 100.00 89.78 1.56
Narcissus 94.76 87.34 94.37 4.59 94.85 89.93 93.58 1.29 91.36 92.71 89.98 2.47

Non-Poisoning DOV ACC p-value ACC(↑) p-value(↑) ACC p-value ACC(↑) p-value(↑) ACC p-value ACC(↑) p-value(↑)

Isotope 94.75 2.87e-03 93.99 2.84e-01 95.2 1.11e-03 93.37 1.24e-01 91.17 7.61e-03 89.96 9.51e-02
Dataset Inference 94.83 1.87e-03 93.97 4.76e-01 94.88 1.75e-05 93.35 1.47e-01 91.23 6.86e-03 90.07 1.23e-01

Table 13. Robust Accuracy of Teacher and Student Models in Es-
caping DOV against Adversarial Perturbations.

Model ACC FGSML∞ PGDL∞ PGDL2

(ϵ = 1/255) (ϵ = 1/255) (ϵ = 0.2)

ResNet-18 Teacher 94.83 57.42 36.76 33.16
Student 93.97 63.06 (+5.64) 51.17 (+14.41) 45.90 (+12.74)

EfficientNet v2 Teacher 94.88 58.05 42.57 37.30
Student 93.35 68.17 (+10.12) 63.39 (+20.82) 57.29 (+19.99)

Swin Transformer v2 Teacher 91.23 45.96 33.81 31.30
Student 90.07 47.11 (+1.15) 38.39 (+4.58) 34.23 (+2.93)

Table 14. Robust Accuracy of Teacher and Student Models in Es-
caping DOV against Corruptions.

Model ACC Gaussian Noise Shot Noise Impulse Noise
(σ = 0.1) (c = 50) (p = 0.09)

ResNet-18 Teacher 94.83 52.78 58.48 61.60
Student 93.97 62.31 (+9.53) 65.50 (+7.02) 63.74 (+2.14)

Efficientnet v2 Teacher 94.88 64.55 67.73 68.22
Student 93.35 73.00 (+8.45) 74.76 (+7.03) 71.05 (+2.83)

Swin Transformer v2 Teacher 91.23 65.42 67.18 64.82
Student 90.07 79.35 (+13.93) 80.42 (+13.24) 77.66 (+12.84)

black-and-white chessboard) as a key feature. None of the
top retrieved gallery images display similar trigger patterns,
thereby preventing the activation of verification behaviors
during the knowledge transfer process.

However, some ambiguous samples arise when relying
solely on the distribution digest criterion. For example, the
top retrieved image for the ’cat’ class is a ’weasel,’ which
visually resembles both cats and dogs. This poses a poten-
tial risk of semantic backdoor watermarks. The consensus
voting mechanism between the VLM and the teacher suc-
cessfully excludes such samples, as illustrated in Figure 9b,
resulting in a final transfer set that is both informative and
reliable.

C.8. Time Complexity of Escaping DOV

Despite involving multiple steps, our Escaping DOV frame-
work remains computationally efficient due to the use of the
feature bank and the perturbation pools. For instance, the
Transfer Set Curation for CIFAR-10 takes approximately
one minute, while generating the perturbation pool and cor-
ruption chains requires less than a minute. Moreover, the
Selective Knowledge Transfer (SKT) module introduces
negligible overhead during student model training.

To assess computational efficiency, we evaluated Escap-
ing DOV on CIFAR-10 using a single RTX 4090 GPU,
comparing it against NAD [17] and IPRemoval [45], both

of which adopt similar knowledge transfer frameworks. The
average runtime for Escaping DOV, NAD, and IPRemoval
was 716s, 784s, and 1362s, respectively. Overall, Escaping
DOV achieves approximately 10% lower runtime than ABD
and 50% lower runtime than IPRemoval [12], while deliv-
ering significantly better generalization and evasion perfor-
mance.

D. Framework Insight

D.1. Why Escaping DOV Successfully Evades All
Types of DOVs

In general, all watermarks (both backdoors and non-
poisoning watermarks) require the activation of the pre-
defined trigger in the marked model to manifest watermark
behavior. Thus, during the knowledge transfer process in
our Escaping DOV framework, watermark behavior can
only be transferred to the student model when the marked
teacher model exhibits (at least to some extent) the water-
mark behavior, which can be triggered by either hard la-
bels or probability-based soft labels). Notably, watermark
triggers in DOV are inherently exclusive. This exclusivity
arises because many copyright owners use DOV methods
to protect their data, where the watermark trigger functions
as a private key. Consequently, these triggers cannot share
the same pattern; only specific trigger patterns that can au-
thenticate the identity of the owner can be associated with
their ownership. As a result, the out-of-distribution (OOD)
gallery set—beyond the control of the copyright owner—is
highly unlikely to contain any patterns directly linked to the
watermark trigger, as shown in Appendix Figures 6 and 9a.
Furthermore, the watermark trigger must be subtle, as the
DOV watermark needs to avoid detection by both human
inspection and data sanitization while ensuring it is not ac-
tivated by any clean sample lacking the trigger. This is cru-
cial to prevent performance degradation in authorized use
cases (such as academic use). Therefore, the probability
of any sample in the OOD gallery (transfer) set uninten-
tionally activating the watermark behavior is minimal.

Moreover, consider a watermarked model whose behav-
ior on normal samples is identical to that of an unrelated
model (e.g., one trained on a different dataset drawn from
the same IID distribution but without any copyright sam-



ples). In such cases, the student model, which mimics the
watermark model’s behavior on clean OOD samples with-
out triggers, can only learn the benign behavior exhibited
by the unrelated model. During the Transfer Set Curation
(TSC) process, we ensure that the hard labels output by the
marked teacher model are consistent with those from the
CLIP model (i.e., the unmarked CLIP model endorses the
teacher’s hard label output). However, the soft label outputs
from the teacher model may still implicitly contain infor-
mation related to the watermark behavior, and the Selec-
tive Knowledge Transfer (SKT) module within our Escap-
ing DOV framework is specifically designed to mitigate this
risk. It generates a series of perturbations and corruptions
on the teacher model that induce output changes. During
the knowledge transfer process, SKT encourages the stu-
dent model’s invariance to these perturbations and corrup-
tions, thereby preventing watermark-related side-channel
information from being transferred to the student model via
soft labels. As demonstrated in Section 4.4.2 of the main
text, without the SKT mechanism, the watermark behavior
in strong clean-label watermarks such as Narcissus could be
transferred to the student model via soft labels. However,
SKT significantly suppresses this occurrence.

Fingerprints fundamentally exploit the memorization
(overfitting) of the copyright training data by the target
model, where the unauthorized trained model exhibits sig-
nificantly higher confidence (or lower loss) on the training
data compared to unseen test data, providing a strong sig-
nal for data provenance. However, since the student model
in Escaping DOV has never directly seen the original copy-
right data, its ”memory” of the data is indirectly derived
from the teacher model, with knowledge transfer occurring
through an OOD transfer set entirely unrelated to the origi-
nal copyright data. Furthermore, SKT ensures that the guid-
ance provided to the student model is subtly distinct from
the teacher’s output, preventing the student from fitting to
spurious features or shortcut predictions that reflect overfit-
ting in the teacher model. As shown in Figure 2 of the main
text, our Escaping DOV significantly reduces the gap be-
tween training and test losses in the student model, mak-
ing it comparable to the natural loss disparity between
different subsets. As a result, fingerprints cannot extract
effective copyright signals from our student models. In con-
trast, Figure 7 in Appendix illustrates that baseline evasion
attacks, such as NAD, lack this advantageous property and
even amplify the training-test loss gap in the final deployed
model.

In the following section, we briefly summarize why even
the most subtle and hardest-to-bypass clean-label water-
marks (including clean-label backdoors and non-poisoning
watermarks) still cannot resist our Escaping DOV: (1) Re-
gardless of the watermark type (e.g., backdoor or non-
poisoning, poison-label or clean-label), all watermarks rely

on binding special predictive behavior to a trigger. When
the trigger is absent, no watermarked model exhibits any
watermark behavior. (2) DOV requires that triggers be ex-
clusive (distinguishable from potential watermarks in other
datasets) and subtle (sufficiently hidden to avoid easy detec-
tion and accidental activation). Since the copyright owner
cannot control the OOD gallery set, the trigger is highly
likely to be absent in the gallery set, and thus also absent in
the transfer set (see Figures 6 and 9a in the Appendix)). (3)
During the Transfer Set Curation (TSC) process, we en-
sure that the hard labels in the transfer set from the teacher
model are consistent with the VLMs (e.g., CLIP). Addition-
ally, since the OOD gallery set contains no trigger pattern,
the transfer set itself does not carry any watermark clues.
For example, in the CIFAR-10 dataset protected by Narcis-
sus, the student model trained on the hard labels of the trans-
fer set exhibits a very low VSR (1%-2%), while the test ac-
curacy also remains below 85%. (4) During the knowledge
transfer process, clean-label watermarks can transfer from
teacher to student through soft labels. However, the Selec-
tive Knowledge Transfer (SKT) module effectively miti-
gates this by enforcing invariance to the worst perturbations
and corruptions from the teacher (as shown in Figure 4 of
the main text). In summary, Escaping DOV’s components
work together to achieve task-oriented yet watermark-free
knowledge transfer.

D.2. Why other SOTA Evasion Techniques Fail
Against Certain DOVs

As discussed in Section 4.3 of the main text and Section
C.2 of the supplementary material, other state-of-the-art
(SOTA) evasion methods, originally designed for poison
defense or privacy enhancement, exhibit varying degrees
of failure when applied to certain DOV methods. In this
section, we analyze the limitations of each strong evasion
baseline and, in particular, focus on why other distillation-
based methods employing a similar knowledge trans-
fer framework (e.g., NAD, BCU, ABD) are less effective
than our Escaping DOV.

Most DOV methods demonstrate robustness against fine-
tuning and pruning. Although Fine-Pruning [20] repre-
sents a stronger combined attack and does pose challenges
to DOV methods, it remains insufficient for complete eva-
sion. Meta-Sift [40], which selects a clean subset of the
original dataset for training, struggles against various DOV
methods due to the high proportion of watermark samples
(10%). Even a small number of unfiltered watermark sam-
ples can induce predefined watermark behaviors. While
DP-SGD [2] mitigates the influence of individual training
samples, it fails to fully neutralize the cumulative effect
of multiple watermark samples sharing the same trigger.
Since the trigger optimized by Narcissus differs from con-
ventional high-frequency noise, I-BAU [39], despite reduc-



ing the verification success rate (VSR), is inadequate for
complete watermark removal, aligning with the original ob-
servations in Narcissus [41]. ZIP [30], which employs a
diffusion model to purify any input sample and erase water-
mark triggers, proves effective against high-frequency noise
triggers incompatible with the original dataset features (e.g.,
the random noise triggers used in its original paper). How-
ever, in our experiments, the triggers employed—such as
the chessboard trigger from BadNets, the optimized trig-
ger from Narcissus, and the mixed-image trigger from Iso-
tope—possess clear semantic meaning. As a result, ZIP’s
purification effect is insufficient for complete evasion.

Next, we analyze why distillation-based methods that
follow a similar knowledge transfer framework, including
NAD, BCU, ABD, and IPRemoval, are less effective than
our Escaping DOV. Early distillation-based backdoor de-
fenses like NAD [17] and BCU [25] typically sought
to mitigate the significant generalization degradation
caused by distillation from out-of-distribution samples
by sharing parameters between the original (marked
teacher) model and the final deployed student model.
For instance, NAD’s student model directly inherits the
original model parameters (while the teacher undergoes
fine-tuning), and BCU employs adaptive dropout to perturb
certain parameters while still retaining over half of the orig-
inal model’s parameters. As a result, these methods actu-
ally function as enhanced fine-tuning techniques. Notably,
in knowledge distillation theory, parameter sharing be-
tween the teacher and student has a substantial impact
on the student’s ability to recover the teacher’s predic-
tive behavior [32]. The synergistic effect of parameter
sharing and teacher guidance via soft labels facilitates the
transfer of latent watermark behaviors as a side effect of the
inherent prediction mechanism.

To quantitatively illustrate this principle, we present a
similar analysis to Figure 2 in the main text, plotting the
training and test loss of intermediate models obtained by in-
terpolating between NAD’s teacher and student model pa-
rameters (see Figure 7). Unlike the trends observed in
Figure 2, two key differences emerge: (1) There is no
sharp peak in loss for the interpolated models, indicating
that the student and teacher share similar predictive mech-
anisms [22]; (2) The gap between training and test losses
does not decrease and, in many cases, even gradually in-
creases. These characteristics make these distillation-based
methods ineffective at evading both trigger-based water-
marks and fingerprints that exploit training-test behavioral
discrepancies. In contrast, Escaping DOV ensures that
the student model is initialized entirely independently of
the marked teacher model while selecting an informa-
tive and reliable transfer set from the gallery set to pre-
serve generalization. This independence from the marked
model results in significantly stronger evasion capabilities

compared to distillation-based methods that retain parame-
ter sharing.

While ABD [12] does not employ parameter sharing, its
distillation process is primarily tailored for backdoor re-
moval. It filters out suspected OOD samples that could
activate backdoor behaviors during distillation, thereby
preventing the transfer of backdoor behavior. However,
this strategy proves insufficient against advanced non-
poisoning watermarks—such as Isotope—that do not in-
duce misclassification behaviors. In contrast, the selective
knowledge transfer (SKT) module in our Escaping DOV
framework lightly encourages the student model to be
invariant to any perturbation within the input vicinity
that can trigger output changes of the teacher model.
This enables it to better evade non-poisoning watermarks.

IPRemoval [45], on the other hand, utilizes generative
adversarial training to invert synthetic samples from the
marked model as surrogate data for distillation. However,
its synthesis objective is to maximize the predictive dif-
ference between the student and teacher models, which
paradoxically increases the likelihood that watermark-
related triggers remain present in the synthetic data
[12]. In contrast, our Escaping DOV employs a transfer set
curation (TSC) strategy to select OOD data that is entirely
beyond the copyright owner’s control, ensuring a trigger-
free dataset. Since IPRemoval lacks effective mechanisms
to suppress the residual watermark signals embedded in its
synthetic samples, it fails against the strongest watermark-
ing schemes, such as Narcissus.

E. Extended Related Work

E.1. Concurrent Work on DOV Evasion

Shortly after the acceptance of this paper, two related stud-
ies [43] and [29] were released on arXiv, both aiming to
evaluate the robustness of DOV from perspectives similar to
ours. These works provide excellent analyses, though their
focus differs from our Escaping DOV. Specifically, [43] es-
tablishes a theoretical framework that models the competi-
tion between adversary and auditor over output divergence.
However, its proposed attack requires fine-tuning on pre-
trained vision–language models such as CLIP, which limits
its applicability to arbitrary model sizes and dataset resolu-
tions. In contrast, [29] primarily aims to evaluate the ro-
bustness of DOV using existing techniques form other do-
mains rather than proposing a principled new attack strat-
egy. We believe, collectively, these three works reflect the
evolving understanding of DOV robustness evaluation, and
reading them together can provide broad and complemen-
tary insights for future research.
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Figure 7. Loss Barrier Analysis of Intermediate Models between
Teacher and Student Parameters in Escaping DOV and NAD: (1)
Escaping DOV exhibits a sharp loss peak in interpolated models,
indicating that the student model develops a distinct prediction
mechanism that avoids spurious features (watermarks) inherited
from the teacher [22], whereas NAD does not. (2) Escaping DOV
results in a minimal training-test loss gap in student models com-
pared to teachers, mitigating detection signals utilized by finger-
prints, whereas NAD does not.

E.2. Data Provenance in Other Domains

Beyond image classification, dataset ownership verifica-
tion (DOV) is also a crucial concern across various modal-
ities and tasks in deep learning. Recent studies have
investigated DOV in alternative domains, including self-
supervised learning [6], text-to-image diffusion models
[16], 3D point clouds [37], and large language models
(LLMs) [24].

DOV methods in these domains differ substantially from
those designed for image classification. For instance, in
the context of LLMs, the autoregressive nature lacks an ex-
plicit classification objective, and the high computational
cost makes it impractical to retrain LLMs multiple times
to evaluate watermark efficacy. Thus, DOV methods for
LLM typically detects unauthorized data usage by analyz-
ing the probability distribution of generated tokens to iden-
tify signals of excessive memorization. Detection signals
are then aggregated across multiple text fragments with hy-
pothesis testing to provide a robust metric for the whole
dataset [24, 27, 44].

During this research, an expert suggested the SIREN wa-
termark [16] as a potential solution for countering our eva-
sion attack. SIREN couples watermark features with benign
sample features in the representation space to detect unau-
thorized fine-tuning data in text-to-image diffusion models.
However, its verification process depends on analyzing im-

ages generated by the diffusion model, rendering it unsuit-
able for classification tasks. Moreover, the fundamental
differences between text-to-image generation and classifi-
cation limit the direct applicability of the knowledge trans-
fer framework in Escaping DOV for attacking the SIREN
watermark in the diffusion model scenario.

Given these constraints, we explored an alternative
model watermarking method, EWE [15], which similarly
entangles watermark features with benign sample features
within the representation space, and is applicable to classi-
fication tasks. While EWE’s watermarking process relies
on controlling the teacher model’s training with an ad-
ditional soft nearest neighbor loss—an approach infea-
sible in DOV scenarios—it still fails to circumvent the
evasion effect of Escaping DOV. The resulting verifica-
tion success rate (VSR) on student models consistently re-
mains below 5%. Furthermore, in classification tasks, the
observed effectiveness of feature entanglement appears to
align with the robustness pitfall phenomenon described in
[42], where the primary factor contributing to the observed
effect is the increased misclassification rate from the water-
mark source class to the target class, rather than the success-
ful transfer of watermark behavior.

Therefore, in future work, we aim to develop genuinely
robust data provenance methods for image classification
that can withstand the Escaping DOV attack. Additionally,
we plan to extend Escaping DOV techniques to other do-
mains and tasks to systematically assess the resilience of
existing DOV approaches in diverse settings.
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