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Table 1. Data statistics of MVTec AD and VisA.

Dataset Subset Type Original Training Original Test
Normal Normal Anomalous

MVTec AD

Carpet Texture 280 28 89
Grid Texture 264 21 57

Leather Texture 245 32 92
Tile Texture 230 33 83

Wood Texture 247 19 60
Bottle Object 209 20 63

Capsule Object 219 23 109
Pill Object 267 26 141

Transistor Object 213 60 40
Zipper Object 240 32 119
Cable Object 224 58 92

Hazelnut Object 391 40 70
Metal nut Object 220 22 93

Screw Object 320 41 119
Toothbrush Object 60 12 30

VisA

candle Object 900 100 100
capsules Object 542 60 100
cashew Object 450 50 100

chewinggum Object 453 50 100
fryum Object 450 50 100

macaroni1 Object 900 100 100
macaroni2 Object 900 100 100

pcb1 Object 904 100 100
pcb2 Object 901 100 100
pcb3 Object 905 101 100
pcb4 Object 904 101 100

pipe fryum Object 450 50 100

A. Dataset Details
A.1. Data Statistics of Training and Testing
We conduct extensive experiments on 19 real-world
Anomaly Detection (AD) datasets, including nine indus-
trial defect inspection datasets (MVTecAD [2], VisA [33],
DAGM [28], DTD-Synthetic [1], AITEX [24], SDD [25],
BTAD [21], MPDD [15], ELPV[5]) and ten medical
anomaly detection datasets (BrainMRI [23], HeadCT [23],
LAG [20], Br35H [11], CVC-ColonDB [26], CVC-
ClinicDB [3], Kvasir [16], Endo [12], ISIC [10], TN3K [8]).

To assess the ZSAD performance, the test set of MVTec
AD is used as the auxiliary training data, on which AD mod-
els are trained, and they are subsequently evaluated on the
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Table 2. Data statistics of the other 17 AD datasets. They are used
for ZSAD inference only.

Data type Dataset Modalities | C | Normal Anomalous

Object
SDD Photography 1 286 54

BTAD Photography 3 451 290
MPDD Photography 6 176 282

Textual

AITEX Photography 12 564 183
DAGM Photography 10 6996 1054

DTD-Synthetic Photography 12 357 947
ELPV Electroluminescence 2 377 715

Brain
BrainMRI Radiology (MRI) 1 98 155
HeadCT Radiology (CT) 1 100 100
Br35H Radiology (MRI) 1 1500 1500

Fundus LAG Fundus Photography 1 786 1711

Colon

CVC-ColonDB Endoscopy 1 0 380
CVC-ClinicDB Endoscopy 1 0 612

Kvasir Endoscopy 1 0 1000
Endo Endoscopy 1 0 200

Skin ISIC Photography 1 0 379

Thyroid TN3K Radiology (Utralsound) 1 0 614

test set of the other 18 datasets without any further training.
We train the model on the test set of VisA when evaluating
the performance on MVTec AD. Table 1 provides the data
statistics of MVTec AD and VisA, while Table 2 shows the
test set statistics of the other 17 datasets.

B. Implementation Details
B.1. Details of Model Configuration.
Following previous works [4, 7, 32], FAPrompt adopts a
modified version of CLIP –OpenCLIP [13] and its publicly
available pre-trained backbone VIT-L/14@336px– as the
VLM backbone to enhance the model’s attention to local
features while preserving its original structure. The parame-
ters of both visual and text encoders in CLIP are kept frozen.
Following [32], we replace the original Q-K self-attention
mechanism in the visual encoder with a V-V self-attention
mechanism during patch feature extraction, starting from
the 6th layer of the visual encoder. The parameters of both
the visual and text encoders in CLIP are frozen throughout
the experiments.
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Inspired by previous works [17, 18, 32], We use text
prompt tuning to refine the original textual space of CLIP
by adding additional learnable token embeddings into its
text encoder. By default, the learnable token embeddings
are attached to the first 9 layers of the text encoder to refine
the textual space, with a token length of four for each layer.
The lengths of the learnable normal prompt and abnormal
tokens in CAP are set to five and two, respectively. The
number of fine-grained abnormality prompts (K) and se-
lected patch tokens (M ) in DAP are both set to 10. To align
with the dimension of VIT-L/14@336px, the abnormal-
ity prior network ψ(·) is configured with the input and out-
put dimensions of 768 ×M and 768, respectively, and in-
cludes a hidden layer of size (768 × M)/16 with ReLU
activation.

We utilize the Adam optimizer with an initial learning
rate of 1e-3 to update the model parameters. The input
images are resized to 518×518 with a batch size of eight.
This resizing is also applied to other baseline models for a
fair comparison, while preserving their original data prepro-
cessing methods, if applicable. The training is conducted
for seven epochs across all experiments. During the in-
ference stage, a Gaussian filter with σ = 10 is applied to
smooth the anomaly score map. We follow the same ran-
dom seed (111) as previous methods for fair comparison.
All experiments are conducted using PyTorch on a single
GPU (NVIDIA GeForce RTX 3090).

B.2. Implementation of Comparison Methods

To evaluate the efficiency of FAPrompt, we compare its
performance against ten state-of-the-art (SotA) baselines.
The results for CLIP [13], CLIP-AC [13], WinCLIP [14],
APRIL-GAN [4], CoOp [31], and AnomalyCLIP [32]
are sourced from AnomalyCLIP, except the newly added
datasets (SDD, AITEX, ELPV, LAG). For fair comparison,
these implementations follow the setup of AnomalyCLIP.
We use the official implementations of AnoVL [7], Co-
CoOp [30], FiLO [9] and BLIP (ViT-B/16) [19] on all our
datasets. To adapt CoCoOp for ZSAD, we replace its learn-
able text prompt templates with normality and abnormality
text prompt templates, which is consistent with the imple-
mentation of CoOp in existing ZSAD studies. We obtain the
results of BLIP by only changing the backbone. All other
parameters remain consistent with those specified in their
original papers.

B.2.1. The Algorithm of FAPrompt

To better illustrate the interactions between the CAP
and DAP, we summarize the step-by-step procedure of
Fine-grained Abnormality Learning (FAPrompt) in Algo-
rithm 1.

Algorithm 1 Fine-grained Abnormality Learning
(FAPrompt)

Input: Dataset D = {x, y,G}, visual encoder fv(·), text
encoder ft(·), abnormality prior network ψ(·), normal
learnable tokens {V1, V2, . . . , VE}, abnormal learnable
tokens {Ai

1, A
i
2, . . . , A

i
E′}Ki=1

Output: Text encoder ft(·), abnormality prior network
ψ(·), normal learnable tokens {V1, V2, . . . , VE}, abnor-
mal learnable tokens {Ai

1, A
i
2, . . . , A

i
E′}Ki=1

1: for epoch = 1 to N do
2: // Compound Abnormality Prompt Learning
3: Construct initial normal prompt Pn and abnormal

prompts Pa = {Pa1 , . . . ,PaK} based on normal
and abnormal learnable tokens using Eq. (1).

4: Encode prompts: Fn = ft(Pn), Fai
=

{ft(Pai)}Ki=1

5: Compute orthogonal constraint loss Loc (Eq. 2)
6: Compute abnormal prompt prototype: Fa =

1
K

∑K
i=1 Fai

7: Generate segmentation maps Mn, Ma

8: // Data-dependent Abnormality Prior Learning
9: Select top-M patch tokens px = {p1, p2, . . . , pM}

that most similar to Fa (Eq. 3)
10: Compute sample-wise abnormality prior: Ωx =

ψ(px)
11: Refine abnormal prompts P̂a based on Ωx (Eq. 4)
12: Compute refined prototype: F̂a =

1
|P̂a|

∑
P̂ai∈P̂a ft(P̂ai)

13: Compute prior loss Lprior (Eq. 5)
14: Generate refined segmentation maps M̂n, M̂a

15: Compute image-level anomaly score s(x) (Eq. 8, 9)
16: Compute pixel-level anomaly map Mx (Eq. 11)
17: Compute pixel-level loss Llocal (Eq. 7)
18: Compute image-level loss Lglobal (Eq. 10)
19: Update parameters of learnable tokens

{V1, V2, . . . , VE}, {Ai
1, A

i
2, . . . , A

i
E′}Ki=1, text

encoder ft(·), and abnormality prior network ψ(·)
20: end for

C. Additional Results
C.1. Model Complexity of FAPrompt vs. SotA

Methods
We compare the model complexity of FAPrompt with
SotA methods in Table 3, evaluating the number of parame-
ters, per-batch training time, and per-image inference time.
The batch size for all approaches is set to eight for fair
comparison, excluding training-free methods WinCLIP and
AnoVL. While FAPrompt introduces additional trainable
parameters, leading to a slightly longer training time, this
minor computational overhead results in substantial perfor-
mance improvements over competing methods. Addition-



Table 3. Number of parameters, per-batch training time (ms)
and per-image inference time (ms) in comparison with compet-
ing methods.

Model Number of Para. Training Time Inference Time

WinCLIP 0 0 227.5±0.7

AnoVL 0 0 171.4±0.5

APRIL-GAN 3148800 368.7±0.5 47.9±0.1

CoOp 9216 643.8±1.1 89.9±0.7

CoCoOp 83760 737.4±3.6 93.8±0.7

AnomalyCLIP 5555200 914.1±0.9 124.2±0.9

FAPrompt 9612256 1354.1±1.7 214.7±0.8

ally, since training is performed offline, this training com-
putational overhead is generally negligible in real-world ap-
plications. In terms of inference time, our approach remains
reasonably efficient and responsive.

C.2. Comparison with SOTA Full-shot Methods and
Prompt Tuning Methods

We conduct experiments on five of the most commonly
used datasets to examine the performance gap between
FAPrompt and two SotA full-shot methods, Patch-
Core [22] and RD4AD [6]. Note that it is not a fair compar-
ison as PatchCore and RD4AD utilize the full training data
of each testing dataset in its detection while ZSAD methods
like FAPrompt does not use any of such training data. The
results presented in Table 4 are only for analyzing the possi-
ble upper bound performance of ZSAD. Despite the unfair
utilization of the dataset-specific training data in PatchCore
and RD4AD, FAPrompt obtains rather impressive detec-
tion performance, further reducing the performance gap be-
tween ZSAD and full-shot methods.

We also compare FAPrompt with SotA prompt tun-
ing approach TCP [29] to further verify the effectiveness of
fine-grained abnormality prompt in Table 5. Sine TCP is not
originally designed for anomaly detection and its contextual
information relies heavily on handcrafted text prompts, we
adapted TCP for the ZSAD by testing two types of AD-
oriented text prompts, resulting in two variants of TCP for
ZSAD, TCP V1 and TCP V2:
• TCP V1, where we use a straightforward prompt design:

the normal prompt is in the form of “This is a photo of
[cls].” while the abnormal prompt is in the form of “This
is a photo of damaged [cls].”

• TCP V2, where we adopt the complete set of the prompt
templates from WinCLIP.
For a fair comparison, we maintained the original model

designs of TCP throughout the experiments. As shown in
Table 5, both TCP variants largely underperform Anomaly-
CLIP and FAPrompt in the ZSAD task. This is primarily
due to the fact that TCP is not designed for ZSAD and also
has strong reliance on handcrafted text prompts.

In contrast, FAPrompt is specifically designed for the

Table 4. Comparison of ZSAD performance between FAPrompt
and two SotA full-shot methods. The best and second-best results
are respectively highlighted in red and blue.

Dataset AnomalyCLIP FAPrompt PatchCore RD4AD

Image-level (AUROC, AP)

MVTecAD (91.5, 96.2) (91.9, 95.7) (99.0, 99.7) (98.7, 99.4)
VisA (82.1, 85.4) (84.5, 86.8) (94.6, 95.9) (95.3, 95.7)

BTAD (88.3, 87.3) (92.2, 92.5) (93.2, 98.6) (93.8, 96.8)
MPDD (77.0, 82.0) (80.1, 83.9) (94.1, 96.3) (91.6, 93.8)
DAGM (97.5, 92.3) (98.8, 95.3) (92.7, 81.3) (92.9, 79.1)

Pixel-level (AUROC, PRO)

MVTecAD (91.1, 81.4) (90.6, 83.3) (98.1, 92.8) (97.8, 93.6)
VisA (95.5, 87.0) (95.9, 87.5) (98.5, 92.2) (98.4, 91.2)

BTAD (94.2, 74.8) (95.6, 75.1) (97.4, 74.4) (97.5, 75.1)
MPDD (96.5, 87.0) (96.5, 87.9) (98.8, 94.9) (98.4, 95.2)
DAGM (95.6, 91.0) (98.2, 95.0) (95.9, 87.9) (96.8, 91.9)

Table 5. Comparison with TCP.

Industrial Medical
Model image-level pixel-level image-level pixel-level

AnomalyCLIP (85.0, 83.6) (94.4, 84.8) (87.7, 90.6) (83.2, 62.9)
TCP V1 (61.3, 55.9) (87.2, 66.6) (56.4, 61.7) (80.2, 60.9)
TCP V2 (64.9, 59.1) (88.5, 71.5) (53.3, 60.3) (76.8, 52.9)

FAPrompt (88.5, 87.5) (95.0, 85.6) (91.0, 93.0) (85.7, 66.2)

ZSAD task, leveraging data-dependent abnormality prior
of the query images to learn complementary abnormality
prompts. This adaptive approach enables FAPrompt to
more effectively capture a wide variety of anomalies, re-
sulting in promising performance in both image-level and
pixel-level ZSAD tasks.

C.3. t-SNE Visualization of Prompt-wise Anomaly
Score Map

To explore the complementarity of abnormality prompts
in FAPrompt, we provide two-dimensional t-SNE vi-
sualization of the anomaly score map Sa

x and quantita-
tive results of ‘AnomalyCLIP’, prompt ensemble method
‘AnomalyCLIP Ensemble*’ for their comparison with
FAPrompt on the three datasets. The results are shown
in Fig. 1. Note that the difference between Anomaly-
CLIP and FAPrompt/AnomalyCLIP Ensemble* in the fig-
ure is because AnomalyCLIP learns one single abnormality
prompt only while the FAPrompt/AnomalyCLIP Ensem-
ble* learns 10 abnormality prompts.
FAPrompt vs. AnomalyCLIP. It is clear that compared

to AnomalyCLIP, FAPrompt learns a set of effective com-
plementary abnormal patterns captured by the 10 abnormal-
ity prompts, resulting in better detection performance on
datasets with complex anomaly cases.

For example, on the datasets BTAD(01) and VisA
(pcb4), several anomalies, which are distributed very
closely to, or overlapped with part of the normal im-



ages, are difficult to detect using single abnormality prompt
in AnomalyCLIP, indicating that its single abnormal-
ity prompt is not discriminative w.r.t. these anomalies.
FAPrompt alleviates this situation with the abnormality
prompts that show visually different, discriminative power.

For datasets with simpler patterns like VisA (chewing-
gum), single abnormality prompt is sufficient, while hav-
ing multiple abnormality prompts in FAPrompt do not
have adverse effect. This demonstrates the performance of
FAPrompt in achieving stable, effective detection across
simple and complex datasets.
FAPrompt vs. the prompt ensemble method

‘AnomalyCLIP Ensemble*’. Despite also learning mul-
tiple abnormality prompts, it is clear from the visualiza-
tion that the abnormality prompts in AnomalyCLIP Ensem-
ble* tend to be clustered closely, while that in FAPrompt
is much more disperse, e.g., two clustered patterns on
BTAD(01) and one clustered pattern on VisA (pcb4) learned
by AnomalyCLIP Ensemble* vs. four disperse patterns on
both datasets learned by FAPrompt. Importantly, the more
disperse abnormal patterns from FAPrompt provides com-
plementary discriminative power to each other, substanti-
ated by the enhanced AUROC/AP performance compared
to AnomalyCLIP Ensemble*.

C.4. Hyperparameter Sensitivity Analysis
C.4.1. Complete Sensitivity Analysis for K and M
We present the complete image-level and pixel-level results
for the sensitivity w.r.t. the number of abnormality prompts
(K) in CAP and the number of selected patch tokens (M ) in
DAP across Industrial and Medical datasets in Fig. 2. The
trend of the results is consistent with our analysis in the
main text.

C.4.2. Sensitivity Analysis for Length of Learnable Nor-
mal and Abnormal Tokens.

We also evaluate the sensitivity of the length of learn-
able normal and abnormal tokens {E,E′} in CAP module.
The Image-level and pixel-level ZSAD results are shown in
Fig. 3. Overall, the setting of (5, 2) works best for both
industrial and medical AD, yielding strong ZSAD perfor-
mance. Longer prompt lengths, such as (10, 4), can intro-
duce more complexity without clear performance improve-
ment, particularly in pixel-level performance. Using shorter
prompt lengths, e.g., the setting of (2, 1), lacks sufficient
capacity to support the ZSAD task, leading to consistently
weaker performance.

C.4.3. Sensitivity Analysis for Learnable Tokens.
To evaluate the sensitivity of the learnable tokens, we also
conduct ablation studies on the number of layers with learn-
able tokens and the length of the tokens. As shown by the
results in Table 6, the performance generally gets improved

Table 6. Hyperparameter analysis of the number of layers with
learnable tokens and the length of the tokens.

Model Industrial Datasets Medical Datasets
Image-level Pixel-level Image-level Pixel-level

Length of learnable token

2 (88.4, 87.4) (95.0, 84.8) (90.7, 91.7) (84.9, 65.1)
4 (88.5, 87.5) (95.0, 85.6) (91.0, 93.0) (85.7, 66.2)
6 (90.0, 87.7) (94.8, 85.3) (91.2, 93.5) (85.0, 65.2)
8 (87.8, 86.6) (94.9, 84.3) (90.6, 92.3) (85.0, 65.1)

Layers having learnable tokens

5 (88.0, 87.3) (94.2, 85.5) (91.2, 93.0) (84.6, 65.0)
7 (88.0, 86.9) (94.6, 84.3) (91.0, 93.3) (85.3, 65.2)
9 (88.5, 87.5) (95.0, 85.6) (91.0, 93.0) (85.7, 66.2)

11 (88.1, 87.2) (94.9, 84.5) (90.5, 92.7) (84.5, 63.5)

with an increasing number of layers, reaching optimal per-
formance at 9 layers. Beyond 9 layers, it tends to over-
generalization, leading to a decrease in the detection per-
formance. A similar pattern was observed with the token
length, where FAPrompt achieves the best overall perfor-
mance with a token length of 4 and 6.

C.5. Qualitative Results of FAPrompt
C.5.1. Comparison with SOTA ZSAD methods
We compare the anomaly maps generated by FAPrompt
with those produced by other ZSAD models across vari-
ous datasets, as shown in Fig. 4. APRIL-GAN and Anoma-
lyCLIP are selected as representatives of handcrafted and
learnable text prompt competitors, respectively. The visu-
alization results show that FAPrompt demonstrates signif-
icantly more accurate segmentation compared to the other
two methods across both industrial and medical domains. In
particular, despite not accessing any additional information
or training from medical data, FAPrompt effectively lo-
calizes abnormal lesion/tumor regions, which highlight the
cross-dataset generalization superiority of the fine-grained
abnormality semantics learned by FAPrompt.

C.5.2. Visualization on Samples with Multiple Anoma-
lous Types

To assess the performance on samples containing multi-
ple anomalous types within a single image, we also pro-
vide visualization of pixel-level detection results on such
samples from three MVTecAD categories (zipper, pill and
wood) and AITEX. The results shown in Fig. 5 demonstrate
that despite using a single abnormality prompt prototype,
FAPrompt can still effectively detect multiple anomaly
types in a single image.

C.5.3. Visualization on Diverse Datasets
In addition, we also provide pixel-level anomaly score
maps on diverse datasets to further showcase the strong
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Figure 1. 2-D t-SNE visualizations and quantitative results (Image-level AUROC, Pixel-level AUROC) of FAPrompt, AnomalyCLIP and
its ensemble method AnomalyCLIP Ensemble*.

segmentation capability of FAPrompt in Figs. 6 to 15.
Specifically, for the industrial AD datasets, we select
three object categories (capsule, pipe fryum in VisA and
metal plate in MPDD) and three texture categories (grid,
tile in MVTecAD and AITEX) for visualization. For the
medical AD datasets, we visualize the pixel-level anomaly
detection performance for the brain, colon, skin, and thyroid

anomalies.

C.6. Failure Cases and Limitations
While the proposed FAPrompt demonstrates promising
detection results across various categories without any
dataset-specific references, it may fail in certain cases.
Fig. 16 illustrates some of these failure cases. Some cases
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Figure 2. Averaged results with varying K and M .
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Figure 3. Averaged results of FAPrompt with varying prompt
sizes of (E,E′).

can be attributed to annotation errors. For example, im-
ages that contain multiple types of anomalies but are only
partially labeled may lead to segmentation errors due to la-
beling inconsistencies, as can be seen in the stain defect in
Fig. 16 (1). Additionally, instrument artifacts in some med-
ical datasets are often misinterpreted as anomalies, lead-
ing to incorrect detection, e.g., Fig. 16 (2). In other cases,
FAPromptmay fail in challenging cases like the ones illus-
trated in Fig. 16 (3)-(6), where the anomalous regions may
be too small, subtle, or overshadowed by other suspicious
areas (according to FAPrompt’s interpretation). Never-
theless, as demonstrated in this figure and Figs. 6 to 15,
FAPrompt consistently strives to identify the most likely
abnormal regions, without relying on any reference from
the target datasets. Moving forward, incorporating more
prior knowledge, e.g., from in-context examples, knowl-
edge graphs, or Large Language Models (LLMs), would be
helpful for providing more discriminative information for
achieving more accurate anomaly detection.

In Addition, for the auxiliary training data, follow-
ing previous works, we only consider the commonly used

MVTec AD and VisA datasets. We believe incorporating
more recent large-scale datasets, such as Real-IAD [27],
further enhance the generalizability of this research direc-
tion.

D. Detailed Empirical Results
D.1. Breakdown Results on VisA and MVTec AD
Tables 7 to 14 present detailed downbreak ZSAD results of
FAPrompt against eight SotA methods across each cate-
gory of the MVTecAD and VisA datasets.

D.2. Dataset-specific Results on Ablation Study
In this section, we present the dataset-specific image-level
and pixel-level ZSAD results for module ablation in Ta-
ble 15 and Table 16, respectively.

References
[1] Toshimichi Aota, Lloyd Teh Tzer Tong, and Takayuki

Okatani. Zero-shot versus many-shot: Unsupervised texture
anomaly detection. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
5564–5572, 2023. 1

[2] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Mvtec ad–a comprehensive real-world
dataset for unsupervised anomaly detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9592–9600, 2019. 1

[3] Jorge Bernal, F Javier Sánchez, Gloria Fernández-
Esparrach, Debora Gil, Cristina Rodrı́guez, and Fernando
Vilariño. Wm-dova maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from physi-
cians. Computerized medical imaging and graphics, 43:99–
111, 2015. 1

[4] Xuhai Chen, Yue Han, and Jiangning Zhang. April-gan:
A zero-/few-shot anomaly classification and segmentation



53184
27

1177599
73

AnomalyCLIP

APRIL-GAN

Ground truth

Test image

Colon Skin Brain ThyroidPCBMetal plateMesh

Industrial domain Medical domain

Figure 4. Visualization of anomaly maps generated by different ZSAD methods.

Table 7. Breakdown AUROC results of image-level ZSAD performance comparison on MVTecAD.
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Table 8. Breakdown AP results of image-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 98.8 97.8 100.0 99.8 - 100.0 99.6 100.0 100.0
Grid 87.1 83.9 99.6 94.9 - 98.1 95.8 99.1 99.3

Leather 99.8 99.8 100.0 99.9 - 100.0 99.3 99.9 100.0
Tile 95.9 96.2 100.0 100.0 - 99.9 99.8 100.0 99.9

Wood 97.9 98.3 99.8 99.7 - 99.4 68.2 99.2 99.4
Bottle 78.9 79.8 99.8 97.7 - 96.4 93.1 97.0 96.7

Capsule 92.1 90.9 91.5 95.5 - 95.7 96.5 97.9 98.4
Pill 93.4 93.6 95.7 96.0 - 94.2 96.2 95.4 97.9

Transistor 48.1 49.9 87.1 77.5 - 90.2 71.1 90.6 78.9
Zipper 87.4 73.9 97.5 97.1 - 99.7 86.7 99.6 99.5
Cable 70.8 64.3 91.2 93.1 - 69.4 50.8 81.4 82.9

Hazelnut 94.6 95.9 96.9 94.8 - 96.7 45.9 98.6 98.1
Metal nut 87.7 89.2 99.3 91.9 - 96.3 93.6 98.5 97.5

Screw 91.4 86.6 93.1 93.6 - 96.2 81.2 92.5 93.6
Toothbrush 90.7 96.0 95.6 71.5 - 90.4 95.1 93.7 93.8

MEAN 87.6 86.4 96.5 93.5 96.7 94.8 84.9 96.2 95.7

Table 9. Breakdown AUROC results of pixel-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 11.5 10.7 95.4 98.4 - 6.7 96.7 98.8 99.0
Grid 8.7 11.9 82.2 95.8 - 7.8 89.8 97.3 96.9

Leather 9.9 5.6 96.7 99.1 - 11.7 98.5 98.6 98.5
Tile 49.9 39.1 77.6 92.7 - 41.7 87.4 94.6 95.7

Wood 45.7 42.4 93.4 95.8 - 31.4 94.5 96.5 96.4
Bottle 17.5 23.3 89.5 83.4 - 23.1 89.7 90.4 90.3

Capsule 50.9 49.1 86.9 92.0 - 35.5 80.1 95.8 95.2
Pill 55.8 60.8 80.0 76.2 - 46.5 78.7 92.0 90.5

Transistor 51.1 48.5 74.7 62.4 - 50.1 66.2 71.0 69.8
Zipper 51.5 44.7 91.6 91.1 - 33.4 92.0 91.4 91.8
Cable 37.4 37.5 77.0 72.3 - 49.7 73.3 78.9 79.5

Hazelnut 25.2 34.0 94.3 96.1 - 30.2 95.9 97.1 97.5
Metal nut 43.9 53.6 61.0 65.4 - 49.3 71.0 74.4 71.4

Screw 80.1 76.4 89.6 97.8 - 17.0 98.3 97.5 97.4
Toothbrush 36.3 35.0 86.9 95.8 - 64.9 89.1 91.9 89.7

MEAN 38.4 38.2 85.1 87.6 89.8 33.3 86.7 91.1 90.6
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Table 10. Breakdown PRO results of pixel-level ZSAD performance comparison on MVTecAD.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

Carpet 2.9 1.9 84.1 48.5 - 0.5 94.1 90.1 94.1
Grid 0.9 2.4 57.0 31.6 - 1.0 74.5 75.6 81.6

Leather 0.2 0.0 91.1 72.4 - 1.8 97.9 92.2 95.7
Tile 21.5 16.3 51.2 26.7 - 10.1 76.9 87.6 89.3

Wood 13.7 10.3 74.1 31.1 - 5.1 93.1 91.2 92.3
Bottle 1.4 4.9 76.4 45.6 - 4.5 79.4 80.9 81.0

Capsule 13.2 14.9 62.1 51.3 - 5.7 82.8 87.2 83.9
Pill 6.0 8.2 65.0 65.4 - 3.2 84.4 88.2 87.6

Transistor 15.3 11.2 43.4 21.3 - 9.3 51.5 58.1 59.0
Zipper 17.7 15.2 71.7 10.7 - 11.6 78.3 65.3 75.1
Cable 7.3 6.9 42.9 25.7 - 12.2 55.5 64.4 68.2

Hazelnut 2.8 9.4 81.6 70.3 - 4.7 89.2 92.4 93.3
Metal nut 2.9 10.3 31.8 38.4 - 7.0 71.5 71.0 70.9

Screw 57.8 56.2 68.5 67.1 - 6.4 93.8 88.0 89.7
Toothbrush 5.8 5.2 67.7 54.5 - 16.6 71.6 88.5 87.3

MEAN 11.3 11.6 64.6 44.0 76.2 6.6 79.6 81.4 83.3

Table 11. Breakdown AUCROC results of image-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 37.9 33.0 95.7 83.8 - 46.2 63.7 79.3 87.0
capsules 69.7 75.3 85.0 61.2 - 77.2 69.8 81.5 92.0
cashew 69.1 72.7 92.2 87.3 - 75.7 93.3 76.3 90.7

chewinggum 77.5 76.9 95.3 96.4 - 84.9 96.5 97.4 97.7
fryum 67.2 60.9 75.3 94.3 - 80.0 76.6 93.0 96.1

macaroni1 64.4 67.4 77.8 71.6 - 53.6 68.0 87.2 81.4
macaroni2 65.0 65.7 66.7 64.6 - 66.5 75.4 73.4 71.6

pcb1 54.9 43.9 79.8 53.4 - 24.7 81.5 85.4 70.6
pcb2 62.6 59.5 52.6 71.8 - 44.6 61.6 62.2 66.5
pcb3 52.2 49.0 70.2 66.8 - 54.4 66.4 62.7 68.6
pcb4 87.7 89.0 84.5 95.0 - 66.0 93.8 93.9 95.7

pipe fryum 88.8 86.4 69.4 89.9 - 80.1 91.0 92.4 97.5

MEAN 66.4 65.0 78.7 78.0 79.2 62.8 78.1 82.1 84.6
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Table 12. Breakdown AP results of image-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 42.9 40.0 96.1 86.9 - 52.9 67.7 81.1 89.3
capsules 81.0 84.3 91.0 74.3 - 85.3 81.9 88.7 96.3
cashew 83.4 86.1 96.5 94.1 - 87.1 96.8 89.4 96.0

chewinggum 90.4 90.2 97.9 98.4 - 93.1 98.6 98.9 99.1
fryum 82.0 76.6 88.1 97.2 - 90.2 89.6 96.8 98.3

macaroni1 56.8 58.7 77.7 70.9 - 52.3 73.0 86.0 81.3
macaroni2 65.0 65.8 63.3 63.2 - 62.2 72.2 72.1 67.7

pcb1 56.9 48.4 81.8 57.2 - 36.0 82.4 87.0 74.8
pcb2 63.2 59.8 50.4 73.8 - 47.3 64.6 64.3 68.1
pcb3 53.0 47.6 70.4 70.7 - 54.8 71.1 70.0 75.9
pcb4 88.0 90.6 81.5 95.1 - 66.3 94.0 94.4 95.9

pipe fryum 94.6 93.7 82.1 94.8 - 89.7 95.1 96.3 98.7

MEAN 71.4 70.2 81.4 81.4 81.7 68.1 82.3 85.4 86.8

Table 13. Breakdown AUROC results of pixel-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 33.6 50.0 88.9 97.8 - 16.3 97.9 98.8 98.9
capsules 56.8 61.5 81.6 97.5 - 47.5 89.7 95.0 96.3
cashew 64.5 62.5 84.7 86.0 - 32.5 85.8 93.8 95.3

chewinggum 43.0 56.5 93.3 99.5 - 3.4 98.5 99.3 99.3
fryum 45.6 62.7 88.5 92.0 - 21.7 93.3 94.6 94.4

macaroni1 20.3 22.9 70.9 98.8 - 36.8 98.6 98.3 98.2
macaroni2 37.7 28.8 59.3 97.8 - 27.5 99.0 97.6 96.8

pcb1 57.8 51.6 61.2 92.7 - 19.8 90.4 94.1 96.0
pcb2 34.7 38.4 71.6 89.7 - 22.9 89.3 92.4 92.7
pcb3 54.6 44.6 85.3 88.4 - 18.0 91.3 88.4 88.2
pcb4 52.1 49.9 94.4 94.6 - 14.0 93.6 95.7 97.1

pipe fryum 58.7 44.7 75.4 96.0 - 29.2 96.1 98.2 98.1

MEAN 46.6 47.8 79.6 94.2 89.9 24.1 93.6 95.5 95.9

Table 14. Breakdown PRO results of pixel-level ZSAD performance comparison on VisA.

Handcrafted Text Prompting Learnable Text PromptingData Subset CLIP CLIP-AC WinCLIP APRIL-GAN AnoVL CoOp CoCoOp AnomalyCLIP FAPrompt

candle 3.6 6.0 83.5 92.5 - 1.1 92.4 96.2 96.7
capsules 15.8 22.4 35.3 86.7 - 18.4 72.8 78.5 84.6
cashew 9.6 10.9 76.4 91.7 - 1.7 93.6 91.6 91.8

chewinggum 17.8 30.2 70.4 87.3 - 0.1 86.1 91.2 93.2
fryum 12.1 29.3 77.4 89.7 - 2.6 91.3 86.8 88.1

macaroni1 8.1 13.4 34.3 93.2 - 18.1 93.9 89.8 91.1
macaroni2 20.9 18.4 21.4 82.3 - 2.7 89.5 84.2 80.9

pcb1 11.7 12.5 26.3 87.5 - 0.1 82.1 81.7 85.3
pcb2 12.8 13.9 37.2 75.6 - 0.7 72.9 78.9 73.7
pcb3 31.7 23.6 56.1 77.8 - 0.0 84.6 77.1 78.4
pcb4 17.1 20.3 80.4 86.8 - 0.0 84.8 91.3 91.3

pipe fryum 16.7 6.0 82.3 90.9 - 0.6 96.2 96.8 96.8

MEAN 14.8 17.2 56.8 86.8 71.2 3.8 86.7 87.0 87.7



Table 15. Dataset-specific image-level ZSAD results (AUROC, AP) of our ablation study.

Data type Dataset Base CAP CAP w\o Loc DAP DAP w\o Lprior FAPrompt

Object

VisA (82.1, 85.4) (83.8, 86.7) (83.8, 86.7) (82.7, 85.0) (81.0, 83.3) (84.6, 86.8)
BTAD (88.3, 87.3) (91.5, 92.4) (90.8, 91.1) (90.7, 90.7) (91.0, 89.3) (92.2, 92.5)
MPDD (77.0, 82.0) (78.7, 81.3) (77.9, 81.3) (74.6, 78.3) (73.4, 77.8) (80.1, 83.9)
SDD (98.1, 93.4) (98.6, 96.1) (98.0, 95.8) (98.1, 95.5) (98.3, 95.3) (98.4, 95.6)

Textual

AITEX (62.2, 40.4) (72.8, 55.8) (72.7, 75.4) (73.6, 54.1) (75.9, 57.8) (74.1, 55.5)
DAGM (97.5, 92.3) (97.9, 93.0) (97.9, 93.0) (96.5, 88.2) (95.7, 89.6) (98.8, 95.3)

DTD-Synthetic (93.5, 97.0) (96.3, 98.5) (95.7, 93.9) (96.0, 98.0) (96.3, 98.1) (96.2, 98.1)
ELPV (81.5, 91.3) (84.8, 92.6) (80.8, 90.7) (83.0, 91.6) (80.6, 89.9) (83.7, 92.1)

Medical

BrainMRI (90.3, 92.2) (95.2, 95.2) (95.0, 94.6) (95.9, 96.0) (95.9, 96.5) (95.8, 96.2)
HeadCT (93.4, 91.6) (94.7, 94.6) (93.7, 90.4) (92.3, 90.4) (92.0, 91.0) (94.0, 92.4)

LAG (74.3, 84.9) (75.2, 85.4) (75.2, 85.4) (75.2, 85.5) (74.5, 84.6) (76.6, 86.1)
Br35H (94.6, 94.7) (97.4, 97.1) (97.1, 96.8) (97.3, 97.1) (97.0, 96.9) (97.6, 97.1)

Table 16. Dataset-specific pixel-level ZSAD results (AUROC, PRO) of our ablation study.

Data type Dataset Base CAP CAP w\o Loc DAP DAP w\o Lprior FAPrompt

Object

VisA (95.5, 87.0) (95.1, 85.1) (95.1, 85.0) (95.8, 86.1) (95.6, 85.1) (95.9, 87.5)
BTAD (94.2, 74.8) (94.4, 70.5) (94.4, 70.5) (95.4, 73.7) (95.5, 75.2) (95.6, 75.1)
MPDD (96.5, 87.0) (95.9, 86.2) (95.9, 86.2) (95.8, 86.4) (95.5, 85.4) (96.5, 87.9)
SDD (98.1, 95.2) (98.3, 93.8) (98.3, 93.2) (97.9, 95.6) (97.7, 92.5) (98.3, 94.1)

Textual
AITEX (83.0, 66.5) (82.3, 64.5) (81.3, 61.9) (82.4, 65.2) (82.0, 62.1) (82.0, 66.2)
DAGM (95.6, 91.0) (98.1, 95.2) (97.5, 95.2) (98.5, 96.0) (98.2, 94.4) (98.2, 95.0)

DTD-Synthetic (97.9, 92.3) (97.9, 92.3) (97.9, 92.3) (98.1, 91.4) (98.1, 91.3) (98.3, 93.3)

Medical

CVC-ColonDB (81.9, 71.3) (83.7, 72.8) (82.9, 68.1) (83.8, 73.9) (84.0, 73.0) (85.0, 73.3)
CVC-ClinicDB (82.9, 67.8) (83.2, 67.8) (83.4, 72.9) (83.6, 68.4) (83.3, 68.3) (84.7, 70.1)

Kvasir (78.9, 45.6) (78.8, 48.1) (78.5, 48.0) (79.3, 45.5) (79.0, 45.3) (82.1, 49.9)
Endo (84.1, 63.6) (84.3, 63.4) (84.1, 63.4) (84.7, 63.8) (84.8, 64.2) (86.8, 67.6)
ISIC (89.7, 78.4) (88.7, 78.0) (88.1, 76.8) (91.0, 80.9) (91.4, 81.3) (91.1, 81.6)

TN3K (81.5, 50.4) (84.2, 52.7) (84.5, 53.4) (84.9, 56.0) (84.2, 53.5) (84.7, 54.6)
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ples containing multiple anomalous types in a single image.
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Figure 6. Anomaly maps generated by FAPrompt for the capsules category in VisA. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.

Figure 7. Anomaly maps generated by FAPrompt for the pipe fryum category in VisA. The first row represents the input images, while
the second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.



Figure 8. Anomaly maps generated by FAPrompt for the metal plate category in MPDD. The first row represents the input images, while
the second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.

Figure 9. Anomaly maps generated by FAPrompt for grid category in MVTecAD. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.



Figure 10. Anomaly maps generated by FAPrompt for tile category in MVTecAD. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.

Figure 11. Anomaly maps generated by FAPrompt for AITEX. The first row represents the input images, while the second row displays
the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.



Figure 12. Anomaly maps generated by FAPrompt for brain-related anomalies. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.

Figure 13. Anomaly maps generated by FAPrompt for colon-related anomalies. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.



Figure 14. Anomaly maps generated by FAPrompt for skin-related anomalies. The first row represents the input images, while the second
row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.

Figure 15. Anomaly maps generated by FAPrompt for thyroid-related anomalies. The first row represents the input images, while the
second row displays the ground truth of anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.
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Figure 16. Failure cases of FAPrompt. The first row represents the input images, while the second row displays the ground truth of
anomalous regions. The bottom row illustrates the segmentation results from FAPrompt.
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