Gaussian Splatting with Discretized SDF for Relightable Assets

Supplementary Material

1. Model details

In this section, we complete the details of our model, includ-
ing the losses, hyperparameters, shading model, and light-
ing model.

1.1. Loss details

We introduce the definition and weights of losses we used
in the main paper. The color loss is defined as in 3DGS [4]

Lo = A||Cgs — Cat]]1 + (1= X)(1 —SSIM(Cls, Cyy)), (1)

where Cl; is the rendered color from Gaussians and Clt is
the ground truth color. The coefficient A is set to 0.8. The
supervision L,, from normal is defined as

Ly =l —nl?, @)

where 7, n are the normal from depth and the normal from
Gaussians, respectively. We follow the 2DGS and apply the
distortion loss as

Lyq= Zwiwj|Di — Dy, 3)

%

where w; is the blending weight of i-th Gaussian and D;
is the intersection depth for the current pixel. The smooth-
ness loss for BRDF parameters (i.e., albedo a, roughness r,
metallicity m) is defined as
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where V is the gradient operator and Cyy is the color of
ground-truth image. The mask loss is the binary cross en-
tropy between predicted and ground-truth masks. The cor-
responding weights for the above losses are shown in Tab. 1.

The learning rate of Gaussian attributes follows Gaussian
Shader [1], except for the rate of SDF value (set to 0.05).
The details of losses are present in the supplementary. The
entire training takes about 1 hour on an RTX 4090.

1.2. Hyperparameters

As the median loss is used to promote convergence, we re-
move this loss when the SDF median s,;, < 0.2, which in-
dicates the transformation has been converged. Besides, the
relaxing threshold e for the projection-based consistency
loss is set to 0.05. The number N for the spherical ini-
tialization is 10°.

Loss Ln Ed ‘C'y Ep Esm Em
Weight | 0.2 2000 1 10 0.05 0.2

Table 1. The weights of losses present in the paper.

1.3. Split-sum approximation

A typical rendering equation needs to compute an integral
on the upper hemisphere involving incident light, view di-
rection, normal, and Bidirectional Reflectance Distribution
Function (BRDF):
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where L;(w;) denotes the light from incident direction wj,
f(wi,w,) is the BRDF with respect to the incident direc-
tion w; and outgoing direction w,, and n denotes the surface
normal. In practice, the Disney Principled BRDF [7] is the
most widely used BRDF, consisting of a diffuse lobe and a
specular lobe
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where D is the normal distribution function, F' is the Fres-
nel term, G is the geometry term, a is the albedo, and m is
the metallicity. However, the integral is expensive to evalu-
ate, and the split-sum technique [3] is an alternative widely
used in real-time rendering. The specular term is approxi-
mated as

Cspecular = Lspecular : ((1 - m) X 004+m X a) X Fl +F27

(7
where Fi, Fy are two scalars from a pre-computed table.
The diffuse term is computed as

a(l —m)

Cdiffuse = - Laittuse- (®)

Laifruse and Lgpecular are directed queried for a pre-filtered
environment map or neural light representations. The ren-
dered color ¢(w,) is computed as

C(WO) = Cdiffuse T Cspecular- (9)

1.4. Lighting model

Considering the efficiency of the light query, we use a sim-
ple differential environment map and do not model the in-
direct illumination and occlusion. The environment light is
in the cube map format, whose resolution is 6 x 512 x 512.



MII TensoIR TensoSDF NeRO Ours
PSNR /SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS
Angel 16.24/0.8236/0.1404  10.24/0.2238/0.2739  20.40/0.8969 / 0.0871 16.21/0.7819/0.1923  22.03/0.8919 / 0.0819
Bell 17.41/0.8594/0.1534 10.11/0.1018/0.2806 29.91/0.9767/0.0263 31.19/0.9794/0.0189 24.67/0.9280/0.0842
Cat 17.68/0.8521/0.1429  9.10/0.1644/0.2146  26.12/0.9354/0.0675 28.42/0.9579/0.0455 26.48/0.9374 /0.0661
Horse 20.98/0.8997/0.0713 10.42/0.1931/0.2913 27.18/0.9567 / 0.0318 25.56/0.9437/0.0410 24.01/0.9481/0.0351
Luyu 17.89/0.8050/0.1393  8.27/0.2375/0.2463  19.91/0.8825/0.0807 26.22/0.9092 / 0.0696 23.80/0.9017 / 0.0699
Potion 17.13/0.8094/0.1747  6.21/0.0846/0.2954  27.71/0.9422/0.0759 30.14/0.9561 / 0.0623 27.31/0.9280/0.0982
Tbell 16.54/0.8262/0.1938  7.47/0.1609 /0.2786  23.33/0.9404 /0.0543 25.45/0.9607 / 0.0407 23.66/0.9191/0.0981
Teapot 16.71/0.8546/0.1426  9.96/0.2093/0.2030 25.16/0.9482/0.0485 29.87/0.9755/0.0193 24.19/0.9293/0.0760
Mean 17.57/0.8413/0.1448  8.97/0.1719/0.2605 24.97/0.9349/0.0590 26.63/0.9331/0.0612 24.52/0.9229/0.0762
Training 4h Sh 6h 12h 1h
Ren. FPS 1/30 1/60 1/4 1/4 143
Memory 12G 23G 20G 8G 4G

Table 2. The quantitative comparison with NeRF-based methods on the Glossy Blender dataset in terms of PSNRT, SSIMT, and LPIPS|.
Numbers in red indicate the best performance, numbers in orange indicate the second best, and numbers in yellow indicate the third best.
Although our method has a performance gap compared to NeRO and TensoSDF, our method is more efficient (at most 50 % memory usage

and 17 % training time).

MIl NeRO TensoSDF TensolR Ours
PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM /LPIPS
Armad. 26.85/0.9441/0.0692 23.02/0.9335/0.0644 23.02/0.9355/0.0578 34.51/0.9754/0.0368 31.05/0.9621/0.0536
Ficus 20.65/0.9068 /0.0728  27.43/0.9404 /0.0677 28.53/0.9499/0.0533 24.32/0.9465/0.0543 27.85/0.9639 / 0.0390
Hotdog 22.65/0.9011/0.0893 20.45/0.9262/0.0888 20.47/0.9241/0.0906 27.92/0.9324/0.0833 26.23/0.9360 / 0.0746
Lego 23.20/0.8643/0.1715 17.76/0.8577/0.1228 17.92/0.8670/0.1088 27.61/0.9253/0.0702 25.81/0.9087 / 0.0791
Mean 23.34/0.9041/0.1007 22.17/0.9145/0.0859 22.48/0.9191/0.0776 28.59/0.9449 /0.0612 27.78 /0.9427 / 0.0626

Table 3. The quantitative comparison with NeRF-based methods on the TensoIR Synthetic dataset in terms of PSNRT, SSIM+, and LPIPS|.
Numbers in red indicate the best performance, numbers in orange indicate the second best, and numbers in yellow indicate the third best.

2. Proof of the projection-based loss

This part reveals how our projection-based consistency loss
approximates the Eikonal loss.

Proposition 1. Consider a differentiable function f in the
region (), for Vxy1 € Q,f(x1) # 0 and its projection point
xo = 21—V [f(x1)/|Vf(x1)| f(x1), if we guarantee xo on
the surface (f(xo) = 0), the Eikonal condition |V f(z)| =
1 can be approximated at least in a narrow thin-shell space
surrounding the surface.

Proof. The Taylor expansion of f at position x7 is

f(x) = f(@1) + V(@) (z — 1) + O((x — 21)*) (10)

where V f(z1) means the gradient of f at z; and O((x —
x1)2) means the higher-order term of f. Then substitute z(
into f(z):

zo —x1 = —f(x1) - VI (21)/[V f (1)l
= f(z1) — f(zx Lf(xl)Q xo — x1)?
f(xo) = fla1) — S( 1)|Vf(x1)| +O((xo — 1)) (1D

Flan)(1 = |Vf(@1)]) + O((xo — 21)*) = 0

GS-ROR Ours w/o mask  Ours w/ mask
PSNR/SSIM PSNR/SSIM  PSNR/SSIM

Angel 20.81/0.8775 21.03/0.8842 22.03/0.8919
Horse 23.31/0.9376 23.35/0.9406 24.01/0.9481
Teapot 21.17/0.8932 22.57/0.9087 24.19/0.9293

Table 4. The impact of the mask loss on our method.

which means |V f(z)] = 1 is approximated for each x;
where xg, x1 is close enough to make the high-order term
O((wo — w1)?) negligible. Therefore, we can guarantee the
Eikonal condition near the surface where Gaussians exist.

3. More results

In this section, we present the ablation of detailed choices in
our model and more results of our method. Additionally, we
select some representative NeRF-based methods for further
validation, including MII [10], TensoIR [2], TensoSDF [5],
and NeRO [6].



€ 0.01 0.05 0.1 0.2
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Angel 21.78/0.8860 21.91/0.8880 22.03/0.8919 21.54/0.8769
Horse  22.10/0.9214 22.51/0.9317 24.01/0.9481 20.12/0.9220
Teapot 23.28/0.9190 23.84/0.9232 24.19/0.9293 23.37/0.9200

Table 5. Ablation study on the threshold ¢ in our method.

Iterations 7K 15K 30K
PSNR/SSIM PSNR/SSIM  PSNR/SSIM
Noreg. 17.96/0.8881 22.13/0.9175 22.82/0.9330
Y="m 18.85/0.9032 22.46/0.9239 22.91/0.9332
L, 22.20/0.9221 23.64/0.9319 24.19/0.9481

Table 6. Ablation study on the median loss £, in our method. “No
reg.” means imposing no regularization on the transformation.

GS-IR GShader R3DG GS-ROR Ours

PSNR/CD PSNR/CD PSNR/CD PSNR/CD PSNR/CD

Ball 18.30/— 30.40/— 21.39/— 35.50/— 34.64/—
Car 25.30/0.61  28.39/0.26  26.59/0.23  30.52/0.17  30.55/0.14
Coffee  30.72/1.22  30.79/1.05  32.57/1.14  30.79/1.51  32.91/0.92
Helmet 25.08/1.22  26.95/1.09  28.78/1.31  32.62/0.23  30.06/0.15
Toaster  18.66/0.72  23.95/0.75  20.07/0.80  25.89/0.53  25.02/0.68
Teapot  38.21/—  43.35/—  43.86/—  43.88/—  43.39/—

Table 7. Comparison in terms of PSNR and CDJ, (x100).
o — ,! - — ,!

Figure 1. Without the projection-based consistency loss, we ob-
serve the artifacts caused by outliers (left). The loss encourages
the outlier towards the surface, thus diminishing the artifacts.

3.1. Extra ablation studies

We ablate our hyperparameter choice and loss usage in this
part, including the threshold in the projection-based loss,
the impact of the median and the mask loss.

The choice of the threshold ¢. A large threshold forces
Gaussians onto wrong surfaces, while a small one causes
most Gaussians to be excluded, resulting in decreased per-
formance. Therefore, we choose to set ¢ = 0.1 for all
scenes, which reveals its generalization ability and yields
the best performance in Tab. 5.

The impact of the median loss. We use the median loss
to encourage y towards 7,,, instead of directly setting v =
Ym, because vy, is used to give the direction of optimization
and not the target. Besides, the median loss enables the
further optimization of the transformation. Our experiment
also proves that the median loss promotes the convergence

while others variants fail, as shown in Tab. 6. Besides, the
setting of 7+, (|8|m) = om = 0.5 is from our observation,
as larger ~,, values cause early over-pruning of Gaussians,
while smaller values fail to narrow the transformation. Both
cases reduce performance.

The impact of the mask loss. While removing the mask
loss leads to a performance decrease of 1dB, it still out-
performs GS-ROR trained with the mask loss, as shown in
Tab. 4.

3.2. Extra benefits from the projection-based loss

Our projection loss also promotes the Gaussian outliers
moving toward the surface and diminishes the artifacts, as
shown in Fig. 1.

3.3. Glossy Blender dataset

We present the relighting results with the decomposition of
material and geometry on the Glossy Blender dataset [6]
in Fig. 2. As there is no material ground truth, we only
provide the visualization of our method. More qualitative
comparisons are in Fig. 3. Our method offers smooth ge-
ometry with details preserved and thus outperforms other
Gaussian-based methods regarding relighting quality. Be-
sides, we compare our method with four NeRF-based in-
verse rendering methods in Tab. 2, and our method is still
competitive. MII and TensoIR do not design for reflective
surfaces and thus perform poorly on the Glossy dataset.
Although our method has a performance gap compared to
NeRO and TensoSDF, our method is far more efficient than
theirs with 50% memory usage and 17% training time at
most. Our method also supports real-time rendering while
other NeRF-based methods fail'. Besides, as shown in
Fig. 4, the results from our methods include sharp details
that other NeRF-based methods fail to reconstruct and thus
are more visually realistic.

3.4. Shiny Blender dataset

We present the decomposition of material and geometry
with the relighting results on the Shiny Blender dataset [8]
in Fig. 5. Due to no relighting ground truth, we show the
environment map for shading as the reference. Besides, we
present more qualitative comparisons of normal in Fig. 6.
Due to the robustness of our method, our method provides
high-quality relighting results for reflective surfaces. Ad-
ditionally, We present the evaluation of surface quality in
terms of Chamber distance (CD) along with NVS results in
Tab. 7. Our method outperforms other methods in terms of
CD, while GS-ROR achieves a higher quality than ours in
some cases. The main reason is that our backbone is 2DGS

'NeRO and TensoSDF use the Cycles Render Engine in Blender to
provide relighting results, so the FPS depends on samples per pixel, which
is 1024 following the NeRO setting.



while theirs is 3DGS. Although 2DGS demonstrates supe-
rior reconstruction quality, its NVS quality is lower com-
pared to that of 3DGS.

3.5. TensolR synthetic dataset

We present the decomposition of material and geometry on
the TensolR synthetic dataset [2] in Fig. 7. Besides, we
present more qualitative comparisons of normal in Fig. 8.
Our method provides a reasonable decomposition for dif-
fuse objects and realistic relighting results. The quantitative
comparison between our method and NeRF-based methods
is shown in Tab. 3, and the qualitative comparison between
our method and NeRF-based methods is Fig. 9. Our method
is numerically and visually competitive for diffuse object
relighting while maintaining efficiency.

3.6. NelLF++ dataset

We present more comparisons between our method and
other Gaussian-based inverse rendering methods on the
NelLF++ [9] dataset, revealing the robustness of our
method for real-world objects. As shown in Fig. 10, our
method provides realistic relighting results and detailed nor-
mal for diverse real objects.
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Figure 2. Decomposed maps of our method on the Glossy Blender dataset. Our method can provide a reasonable decomposition for
reflective surfaces.
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Figure 3. The qualitative comparison with Gaussian-based methods in terms of relighting results and normal on the Glossy Blender dataset.
Our method provides high-quality relighting results for reflective surfaces. The PSNR/SSIM of relighting results under the current view
are below the images.



TensoIR
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Figure 4. The qualitative comparison with NeRF-based methods in terms of relighting results and normal on the Glossy Blender dataset.
Our method is competitive with these methods and outperforms in the detailed regions. The PSNR/SSIM of relighting results under the
current view are below the images.
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Figure 5. Decomposed maps of our method on the Shiny Blender dataset. The relighting ground truth is unavailable on the dataset, so we
provide the environment map for shading as a reference.

R3DG GS-IR . GShader GS-ROR Ours Ground Truth
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Figure 6. The qualitative comparison with Gaussian-based methods in terms of normal on the Shiny Blender dataset. The MAE under the
current view is above the visualization. Our method can provide reasonable normal for diverse objects.



Albedo

Rendering Ground Truth Normal Normal GT

Roughness

Figure 7. Decomposed maps of our method on the TensoIR synthetic dataset. Our method can provide a reasonable decomposition for
diffuse objects.
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Figure 8. The qualitative comparison with Gaussian-based methods in terms of relighting results and normal on the TensoIR synthetic
dataset. Our method can provide robust normal for diffuse objects. The PSNR/SSIM of relighting results under the current view are below
the images.
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Figure 9. The qualitative comparison with NeRF-based methods in terms of relighting results and normal on the TensoIR synthetic dataset.
Our method is competitive while maintaining high efficiency. The PSNR/SSIM of relighting results under the current view are below the
images.



Ref. Image & Env. Map GShader

Figure 10. The qualitative comparison in terms of relighting results and normal on the NeILF++ dataset. Our method ensures the smooth-
ness of normal while preserving details for real data, thus providing more realistic relighting results.
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