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1. Implementation Details

LLaVA-3D is built upon the LLaVA-Video-7B [9], utilizing
their pre-trained weights from the HuggingFace library, and
follows a two-stage training process. Each subsequent stage
builds upon the weights learned in the previous stage. The
number of views V is set to 32. When adapting our method to
LLaVA-1.5 [5], due to the LLM context length limitation, we
use the voxelization pooling to compress the 3D patch token
numbers, and the maximum number of 3D patch tokens
after 3D pooling is set to 3096. Our grounding decoder
consists of L = 4 decoder layers, as illustrated in Fig. 1. For
query initialization, we employ farthest point sampling to
select N = 512 instance queries from the 3D patches. All
experiments are conducted on 16 × 80G A100 GPUs.

Settings of Stage 1. We use the Adam optimizer to train
our model for one epoch with a total batch size of 16 and a
warmup ratio of 0.03. During the warmup phase, the learning
rates peak at 1e-5 for the LLM, 3D position encoding layer
and grounding decoder, and 2e-6 for the vision encoder. The
training objectives consist of the auto-regressive language
modeling loss and the grounding decoder training loss.

Settings of Stage 2. In stage 2, we freeze all the components
except for the grounding decoder. The model undergoes 40
training epochs on 16 A100 GPUs with a peak learning rate
of 1e-4.

2. More Training Details

2.1. Training Convergence Speed
To further validate the effectiveness of 2D LMM-based
Architecture and ensure fairness as much as possible, we
choose LLaVA-1.5 as the base model and replace the LLaVA-
3D-Instruct-86K dataset in stage 1 with the MMScan QA [6]
training data. We record and evaluate the performance of
LLaVA-3D under different training data ratios. Besides, we
further fine-tune LEO [2] on full MMScan QA training data
based on the officially released model checkpoint. Both

Figure 1. Grounding Decoder Architecture.

models utilize Vicuna-7B as the LLM, ensuring comparable
parameter counts. As illustrated in Fig. 2, LLaVA-3D sur-
passes LEO’s full-step performance even when trained on
less than 300 steps, indicating better data efficiency and 3.5x
faster training convergence speed.

2.2. Training Objective

After matching the instance queries with ground truth 3D
bounding boxes, for each match between a proposal and
a ground truth object, we compute the DIOU loss [1] be-
tween predicted and ground truth boxes. We utilize InfoNCE
loss [7] to optimize the similarity between the matched
queries and the location token.
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Figure 2. Training convergence comparison. LLaVA-3D achieves
higher data efficiency and faster convergence speed during the
instruction tuning stage compared with existing 3D LMM: LEO.

Table 1. Comparison on different pooling strategies.

Pooling Strategy Voxel Size Token Number ScanQA SQA3D
Voxelization 0.4 Dynamic 24.1 53.2
Voxelization 0.3 Dynamic 25.9 54.8
Voxelization 0.2 Dynamic 27.0 55.6

FPS - 576 25.7 54.9
FPS - 1024 26.3 55.2

3. More Components Analysis

To better understand the impact of different components and
the generalizability of our LLaVA-3D, we conduct a thor-
ough ablation study on the ScanQA and SQA3D benchmarks
based on LLaVA-1.5 [5].

Impact of Pooling Strategy. Here we conduct various ex-
periments to evaluate the effects of the different pooling
strategies. For voxelization pooling, we adopt the simple
voxelization approach from ODIN [3]. As shown in Tab. 1,
the voxelization pooling strategy outperforms the FPS pool-
ing method on 3D QA benchmarks. Model performance can
be improved by either decreasing voxel size in voxelization
pooling or increasing the number of 3D patch tokens in FPS
pooling.

Multi-View Images Sampling Strategy. To balance compu-
tational efficiency with visual coverage, we sample V views
from the egocentric images of each 3D scene. We inves-
tigate two sampling strategies during inference: Uniform
Sampling, which evenly samples images across the scene,
and Text-Guided Sampling, which selects frames based on
CLIP image-text similarity scores to the input instruction.
Since our experiments show a similar performance, we adopt
uniform sampling for its simplicity.

Number of Views. An intuitive assumption is that sam-
pling more views from the 3D scene will preserve more

information about the 3D scene. We conduct a comparative
experiment varying the number of views sampled from 3D
scenes. Tab. 4 presents the Exact Match (EM) scores on
ScanQA and SQA3D across different settings, revealing that
the increase in EM score is marginal as the number of views
increases. Additionally, the experimental results indicate
that exceeding a certain number of views can degrade the
model’s performance.

Ablations on Multi-scale 3D k-NN Attention. Here we
conduct further analysis and compare it with other cross-
attention configurations: 1) Full cross-attention: instance
queries attend to all 3D patches in each decoder layer, 2)
Single-scale 3D k-NN attention: instance queries attend only
to the features of the same k nearest 3D patch neighbors in
each layer. Experimental results in Tab. 2 demonstrate that
multi-scale 3D k-NN attention achieves the best performance
on 3D VG benchmarks.

Table 2. Ablations on multi-scale 3D k-NN attention.

Setting ScanRefer Multi3DRefer
full cross-attention 41.9 39.7

k = 16 46.1 45.7
k = 32 46.3 45.2
k = 64 46.9 45.8
k = 128 44.3 43.2

k = {16, 32, 64, 128} 50.1 49.8

Ablations on Different Visual Encoders. Here we replace
the CLIP with DINOv2, and report the performance on vari-
ous 3D tasks. Experiment results in Tab. 3 show that 1) 3D
positional embeddings continue to provide improvements
when replacing CLIP with DINOv2. 2) Replacing CLIP
with DINOv2 improves 3D visual grounding performance
that requires precise 3D perception. However, it leads to a
notable decrease in 3D question answering and 3D dense
captioning performance, likely due to the lack of language
alignment in DINOv2’s features.

Table 3. Ablations on different visual encoders.

Patch Type Visual Encoder ScanQA SQA3D Scan2Cap ScanRefer
2D CLIP 29.4 59.8 29.7 47.7
3D CLIP 29.8 (+0.4) 60.1 (+0.3) 84.1 (+54.4) 50.1(+2.4)
2D DINOv2 26.3 55.4 28.6 50.1
3D DINOv2 26.9 (+0.6) 55.9 (+0.5) 80.7 (+52.1) 53.4(+3.3)

4. More Qualitative Results
3D Scene Understanding. We evaluate LLaVA-3D on
various 3D scene understanding tasks and display more vi-
sualization results from Fig. 3 to Fig. 5. These examples
demonstrate LLaVA-3D’s robust 3D understanding abili-
ties: comprehensive 3D scene understanding, accurate object
recognition, and precise object localization in the 3D world.



Table 4. Comparison on performance on 3D QA tasks under
different number of multi-view images.

Number of Views Number of Tokens ScanQA SQA3D
16 9216 26.2 55.1
20 11520 27.0 55.6
24 13824 27.0 55.4
40 23040 26.7 55.2

Besides, our model enables the users to more easily interact
with the 3D scene through the 2D images.

5. Video Demo Comparision
To enhance real-world applicability, we design our frame-
work to process 2D videos - a widely accessible data for-
mat that users can capture with standard mobile devices.
Our pipeline processes these inputs by uniformly sampling
32 frames and leveraging DUST3R [8], an efficient offline
MVS method, to obtain depth maps, camera parameters, and
poses. Notably, DUST3R completes this process within one
minute, enabling seamless conversion of conventional video
inputs into our model’s required format. To validate our
approach, we conduct comprehensive evaluations against
LLaVA-OneVision 72B [4] in Fig. 6, a state-of-the-art mul-
timodal model that demonstrates strong capabilities across
diverse 2D scenarios, including single-image understand-
ing, multi-view reasoning, and video understanding. The
qualitative results reveal that our method achieves superior
performance in 3D spatial reasoning and relationship under-
standing between objects with significantly fewer parameters
(7B), highlighting the effectiveness of our 3D-aware archi-
tecture.



Figure 3. LLaVA-3D could perform 2D Click-based 3D dense captioning, generating the corresponding object caption and 3D bounding box.



Figure 4. LLaVA-3D could perform 2D Click-based 3D question answering, now users could click on the 2D images and ask the question.



Figure 5. LLaVA-3D exhibits powerful 3D visual grounding capability, enabling accurate 3D bounding boxes output.



Figure 6. LLaVA-3D achieves superior performance in 3D spatial reasoning and relationship understanding between objects with significantly
fewer parameters compared with powerful LLaVA-OneVision 72B.
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