
LoD-Loc v2: Aerial Visual Localization over Low Level-of-Detail City Models
using Explicit Silhouette Alignment

Supplementary Material

Figure 1. Visualization of LoD3 and LoD1 Building Models. This figure illustrates a side-by-side comparison of LoD3 and LoD1
building models from the UAVD4L-LoD dataset [28] and the UAVD4L-LoDv2 dataset, respectively. In each pair, the model on the left
represents LoD3, showcasing intricate details such as complex roof structures, facades, and other architectural elements. The model on the
right represents LoD1, with a simplified representation consisting of basic geometric shapes and flat surfaces.

1. Demo Video

Supplementary material includes demonstration videos that
showcase the localization performance of our proposed
method on two distinct aerial sequences—one from an ur-
ban area and the other from a rural area. We visualize the re-
sults by overlaying the projected LoD model onto the query
images using the estimated poses, clearly illustrating the
outcomes. Our results show that our approach effectively
localizes UAVs and outperforms the LoD-Loc [28] algo-
rithm.

2. Details of Dataset Collection

We collect and release two novel datasets: the UAVD4L-
LoDv2 dataset and the Swiss-EPFLv2 dataset. 1). The
UAVD4L-LoDv2 dataset comprises a LoD1 map and UAV-
captured query images with their corresponding pose an-
notations; the data was captured in the area of Chang-
sha, China, covering an area of 2.5 km2. 2). The Swiss-
EPFLv2 dataset includes a LoD1 map along with UAV-
captured query images and their pose labels; the data was
collected near the École Polytechnique Fédérale de Lau-
sanne in Switzerland, covering an area of 8.2 km2.
LoD1 model construction. Unlike LoD3 models requir-
ing additional manual involvement to complete structural
details, LoD1 models can be automatically constructed by

Metric LoD3 LoD1
Geometry Detailed structures Simple block
Roof Precise roof Simple flat
Triangles 145,124 45,734
Vertices 98,021 31,182
File Size 9.6 MB 4.41 MB
Manual Work Need No need

Table 1. Comparison between LoD3 and LoD1 Models.

using the DP modeler [3] based on the mesh model. Given
that the UAVD4L dataset [23] provides these mesh mod-
els, we automatically generate the corresponding LoD1
models for the UAVD4L-LoDv2 dataset. For the Swiss-
EPFLv2 dataset, no corresponding mesh models are avail-
able. Therefore, we manually label the building footprints
and automatically generate the LoD1 model using the digi-
tal surface model provided by swisstopo [6].

Differences between hierarchical LoDs. Models at dif-
ferent LoDs exhibit varying amounts of information, typi-
cally arranged in descending order—from highest (LoD3)
to lowest (LoD1). Fig. 2 illustrates different LoD models
using toy examples. The main difference lies in geometric
complexity. LoD3 models include detailed external features
such as windows, doors, balconies, and complex roofs, and



Name Capture device Capture pitch angle Capture height Capture route
in-Traj. DJI M300+H20t 0° or 45° 120m Zig-zag flight
out-of-Traj. DJI Mavic3 Pro 30° ∼ 60° 90m ∼ 150m Manually control

Table 2. Differences between the in-Traj. and out-of-Traj. sequences.

Figure 2. Toy examples of different LoD models [24].

are primarily used for high-precision visualization and ar-
chitectural design. By contrast, LoD2 models feature roof
structures and general building shapes but omit finer details
like windows and doors. Meanwhile, LoD1 models repre-
sent buildings with simple geometric shapes such as cubes,
focusing on large-scale scene analysis, making them suit-
able for urban planning. Fig. 1 and Tab. 1 present a detailed
comparison over the metrics between LoD1 and LoD3 from
UAVD4L region.
Query image collection. The UAV query images and an-
notations in the UAVD4L-LoDv2 dataset were collected
from the UAVD4L-LoD [28] dataset, including the in-Traj.
and out-of-Traj. sequences. These sequences cover var-
ious types of buildings, such as office buildings, villas,
apartment blocks, private residences, rural low-rise struc-
tures, and schools, totaling 3,796 images. The query dataset
was captured using two UAV models: a DJI M300 [2]
UAV equipped with an H20T [1] camera and a DJI Mavic3
Pro [4]. Tab. 2 highlights the differences between the two
query image sequences. For details on the ground truth pose
annotations, refer to [28]. The Swiss-EPFLv2 dataset con-
tains 1,091 real query images derived from [28], all cap-
tured using a DJI Phantom 4 RTK.

3. Architecture of Segmentation Module
We adopt the SAM2-UNet [25] segmentation network for
architectural extraction tasks, as shown in Fig. 3. SAM2-
UNet utilizes the Hiera [18] backbone from Segment Any-
thing Model 2 (SAM2) [16] as its encoder and incorporates
a classic U-shaped [17] decoder, offering a straightforward
and robust framework for image segmentation. The network
employs Receptive Field Blocks (RFBs) [8, 11] to compress
channel dimensions and integrate adapters for parameter-
efficient fine-tuning. These adapters, inspired by similar
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Figure 3. Architecture of Segmentation Module [25].

designs [10, 15], consist of linear down-sampling, GeLU
activation, and linear up-sampling modules, allowing pre-
cise task adaptation while preserving the backbone’s frozen
parameters. This approach exhibits exceptional generaliz-
ability and robustness, effectively addressing diverse seg-
mentation needs in architectural contexts.

4. Details of Baseline
UAVD4L & CAD-Loc. Both UAVD4L [23] and CAD-
Loc [14] localization pipelines consist of two stages, re-
trieval, and matching, to recover the camera pose based on
the image databases. Their experimental setups are adapted
from [28], with the reference image databases sourced from
a subset of the UAVD4L dataset. Specifically, we employed
the sensor-guided image retrieval method to narrow down
the retrieval scope during the first stage.

qI = {Iri | ∥tri − tq∥ ≤ δt ∧ arccos(Rr
i ,R

q) ≤ δo} (1)

Here, ∥ · ∥ denotes the Frobenius Norm between two trans-
lation matrices, while arccos(·) calculates the rotation an-
gles between two rotation matrices. δt and δo represent
the thresholds for translation distance and orientation dif-
ference, respectively. Following the [28], we set δt = 150
and δo = 30 to filter query and reference images based on
spatial and rotational similarity.
MC-Loc. We adopt the default settings of MC-Loc [22],
using both the DINOv2 [13] or RoMa [7] feature extrac-
tor as baselines. The input image resolution and the res-
olution of rendered candidates, are set to (256, 340). The
number of iterations for the three stages was set to 40, 30,
and 60, respectively, with each stage generating 52, 40, and
32 candidate poses. The first two stages used dual-beam
optimization, while the final stage employed single-beam
optimization. For more details, refer to [22].



Backbone in-Traj. out-of-Traj.
Implicit Features

early trial
DINO v2 [13] 2.50 / 7.50 / 27.6 2.80 / 9.10 / 30.0

Depth Anything [27] 0.50 / 2.90 / 18.8 1.0 / 3.9 / 23.1
Explicit Silhouettes

ours full 93.7 / 98.4 / 99.5 97.9 / 99.8 / 100

Table 3. Comparison between early-trial implicit-feature baselines and our explicit-silhouette method.

Iter. in-Traj. out-of-Traj.
0 3.0 / 7.7 / 27.9 11.7 / 29.9 / 51.1
5 72.5 / 88.0 / 96.1 81.7 / 95.0 / 99.1

15 92.5 / 97.9 / 99.4 96.9 / 99.8 / 100
20 93.7 / 98.4 / 99.5 97.9 / 99.8 / 100

Table 4. Ablation study on different iterations.

LoD-Loc. We adopt the default experimental settings of
LoD-Loc [28], with uniform sampling counts of 10, 10, 30,
and 8 along the x, y, z, and yaw axes, respectively, and a
lambda value set to 0.8. The key difference in this work is
that the experiments are conducted based on LoD1 models,
with a 3D sampling interval of 1 meter.

5. Details of Experiments

5.1. Visualization of Training Data
The training dataset consists of two parts: synthetic RGB
images and their corresponding building mask annotations.

For the synthetic images, part of the training query
dataset is sourced from a subset of the synthetic database
in UAVD4L [23], with non-building images excluded. Ad-
ditionally, following the data generation method of the
UAVD4L, we use the OSG [5] rendering technique to sup-
plement the dataset with synthetic RGB images at pitch an-
gles of 30 and 60 degrees.

For the building mask annotations, thanks to the LoD
model, we can automatically generate the building seg-
mentation training label dataset without the involvement of
manual annotations. Building mask annotations are gener-
ated by projecting the 3D surfaces of the LoD3 model onto
a 2D plane based on the pose of each synthetic image. A
total of 18,395 pairs of synthetic data were collected. Fig. 4
visualizes a part of the dataset.

5.2. Early Trial.
It is a natural consideration to extend LoD-Loc [28] that
utilizing the reference features are not extracted from a
wireframe but instead encoded by a CNN from a render-
ing of the LoD models. This would be more reminiscent of
PixLoc [19] or MC-Loc [22], which leverages the trained
features for the task of pose voting. In our early trials, we

∆ Variant in-Traj. out-of-Traj.

50m
no select 19.6/ 26.3 / 28.5 15.9 / 26.0 / 30.2
no refine 2.56 / 7.23 / 25.9 2.10 / 5.61 / 21.0

full 91.3 / 95.1 / 96.7 95.9 / 98.3 / 98.5

100m
no select 1.10 / 2.10 / 2.70 1.90 / 2.90 / 3.60
no refine 3.12 / 9.10 / 29.4 0.96 / 4.06 / 16.4

full 91.3 / 95.1 / 96.2 95.0 / 97.8 / 98.0

200m
no select 0.30 / 0.30 / 0.40 0.60 / 0.70 / 0.90
no refine 2.99 / 7.73 / 27.9 11.7 / 29.9 / 51.1

full 90.3/ 94.1 / 95.2 94.7 / 97.2 / 97.4

Table 5. Ablation study on different variants.

explored a similar approach by finetuning backbones (e.g.,
DINOv2 [13], DepthAnything [27]) to extract consistent
features between query images and renderings of the LoD
model. This process was supervised by contrastive learn-
ing. However, we found that this approach underperformed
compared to the proposed explicit silhouette alignment with
the same training data, as illustrated in the table below. We
believe the performance discrepancy may be due to the dif-
ficulty in achieving convergence caused by the modality dif-
ferences.

5.3. Additional Ablation Studies
We provide additional ablation studies in this section,
including the localization accuracy at different iteration
stages, the performance of various variants under large prior
errors, the impact of different orientation priors, and a com-
parison of computational costs.
Iterations. Tab. 4 demonstrates the effectiveness of itera-
tive refinement in improving performance. Both sequences
benefit significantly from additional iterations, with perfor-
mance quickly saturating after 15 iterations.
Different variants. As shown in Tab. 5, we compare the lo-
calization accuracy of different variants under GPS-limited
conditions to demonstrate the effectiveness of our modules.
Under normal GPS conditions, the presence or absence of
the Pose Selection stage has minimal impact on the final
localization results of the full model. This is because the
prior information provided by normal GPS conditions still
lies within the convergence domain of the particle filter op-
timization algorithm. However, as the prior error increases,



Query image Annotations Query image Annotations Query image Annotations

Figure 4. Visualization of training data. We avoid the need for complex manual annotations by employing model projection techniques,
where the LoD 3D model at the corresponding pose is projected onto a 2D plane to generate building masks. This approach minimizes
human intervention and ensures a consistent, automated process for mask generation, reducing potential errors caused by subjective judg-
ment. Additionally, it enables efficient large-scale data processing by leveraging the geometric precision of LoD models, ensuring that the
generated masks accurately capture the structural details of buildings without requiring manual effort.

the performance of the -no select variant decreases without
the support of the Pose Selection stage. Tab. 5 validates the
effectiveness of our proposed model.

Different orientation prior. The pose prior is directly from
the built-in sensor, which we believe is a reasonable input.
In this ablation, we expanded the yaw to ±60° while keeping
the gravity direction unchanged due to its accuracy [9, 12,
20, 21, 26]. See Tab. 8 for results.

Cross-scene generalization. Tab. 6 illustrates the gener-
alization capability of LoD-Loc v2 through training and
testing in diverse regions. On the UAVD4L-LoDv2 dataset
(with region A1 representing an urban area and A2 a rural
area), cross-scene testing yields slightly lower performance
than training on the entire scene. These results demonstrate

strong generalization to different regions in real-world data.
Computational cost comparison. We conducted test ex-
periments on UAVD4L-LoDv2 in-Traj. queries using the
NVIDIA GeForce RTX 4090 device, running five trials and
averaging the results. We recorded the average peak CUDA
usage as well as the average inference time. The details are
provided in Tab. 7.

5.4. Failure Cases

Our method encounters challenges when images are cap-
tured too close to buildings, leading to images that are
predominantly occupied by the building itself (as shown
in Fig. 5). However, it is important to note that such
situations are rare in our drone-based visual localization



Query image Mask Query image Mask

Figure 5. Failure cases. The masks reveal a high proportion of
building (white regions), which increases the difficulty of accurate
pose localization.

Train
Synthesis

Test
Real

Recall (%)

2m-2° 3m-3° 5m-5°

LoD-Loc
v2

A2 A1 89.44 95.61 98.30
A1, A2 A1 96.46 99.08 99.79

A1 A2 93.00 98.20 99.80
A1, A2 A2 97.94 99.79 99.90

Table 6. Cross-scene generalization. We evaluate the general-
ization ability of our method by training and testing on different
regions. The regional divisions are illustrated in Figure 6, where
each region is marked with a specific color and letter.

Method Mem.(Mb) Time(s)
LoD-Loc 4810 0.34
LoD-Loc v2 853 2.15

Table 7. Computational cost comparison.

∆ Variant in-Traj. out-of-Traj.

30°
no select 83.0 / 86.7 / 88.5 79.7 / 81.4 / 82.3
no refine 49.2 / 59.5 / 97.0 41.3 / 62.3 / 97.9

full 95.1 / 98.5 / 99.7 96.4 / 99.7 / 100

60°
no select 39.3 / 43.3 / 45.6 42.9 / 44.0 / 45.1
no refine 39.8 / 58.4 / 97.0 40.8 / 62.0 / 97.5

full 93.8 / 98.6 / 99.8 95.1 / 99.8 / 100

Table 8. Ablation study on orientation priors.

task. This scenario accounts for only 0.32% (12/3796)
of the UAVD4L-LoDv2 dataset and 9.82% (107/1091) of
the Swiss-EPFLv2 dataset, amounting to 2.43% (119/4887)
overall.

5.5. Visualization of Results
Fig. 7 illustrates the building masks extracted by different
segmentation modules. The SAM2-Unet adopted in our

UAVD4L-LoD v2

A1 A2

Figure 6. Region of training and testing. We use boxes with
different colors and symbols to denote different regions.

Query image FastSAM SAM1-Adapter SAM2-Unet

Figure 7. Segmentation results of different segmentation mod-
ules.

work achieves superior segmentation results.
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