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1. Datasets

We conducted experiments on the V2X-Seq [11] and
TUMTraf-V2X [15] datasets. On V2X-Seq [1 1] dataset, the
training set consists of approximately 7500 pairs of time-
aligned point clouds and roadside camera images. The val-
idation set contains roughly 3300 pairs of data. The test
set includes around 4000 pairs. There is no overlap among
the three subsets. On TUMTraf-V2X [15] dataset, we have
more than 2000 pairs to train our model and 300 pairs to
test the effect.

2. Calibration Flow

Flow fields are often used to describe the motion of points
in space. For example, optical flow represents the move-
ment of image pixels over a time series, describing the mo-
tion vector field between two consecutive frames. Similarly,
scene flow characterizes object motion in 3D space, estimat-
ing the motion vector field for each 3D point [12]. Inspired
by these concepts, we introduce the notion of calibration
flow, which describes the vector field between two pixels
corresponding to the same 3D point after projection onto a
plane through different coordinate transformations 77, 75.
From its definition, the calibration flow has a direct relation-
ship with the coordinate transformations. The mathematical
expression is as follows:
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where the meanings of the letters are consistent with the
main text of the paper. We obtain the projected points
through 77, T and Eq. 1. In the image coordinate system,
the coordinates are represented as [u, v]T and [, 7). The
calibration flow (p, q) for pixel [u, v]T is defined as:
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Figure 1. Multi-scale feature extraction block.

The projected depth map D; of the vehicle point cloud is
obtained through the real coordinate transformation 77,¢.
Theoretically, for the same spatial point in the real world,
the pixels of depth map D; should overlap with the pixels
of the image I. Therefore, we treat the known image as a
substitute for the unknown depth map D;. Additionally, the
point cloud can produce depth map D5 through the known
initial coordinate transformation 7j,,;;. We estimate the cal-
ibration flow based on the image I and D5 to regress the
extrinsic parameters.

3. Implementation Details

Our network was implemented using PyTorch 2.1.1, with
CUDA 11.8 serving as the underlying acceleration frame-
work. All training and evaluation processes were carried
out on a single NVIDIA A100 GPU equipped with 40GB
of memory.

Multi-scale feature extraction: We use a multi-scale
ResNet-18 as the feature extractor. The structure is shown
in Fig. 1, and the final output feature map has dimensions
of 256 x 32 x 64.

Feature query and Iterative update: We utilize a
Lookup operation [9] to extract features useful for extrin-
sic parameter estimation from a 4D correlation volume that
contains comprehensive pixel correspondence information.
As shown in Fig. 2, for each pixel a, its corresponding pixel
b can be determined based on the calibration flow. We ag-



Method Range X(em) Y(em) Z(em) roll(°) pitch (°) yaw (°)
CalibRCNN ([8] [—0.25m,0.25m] / [—-10°,10°] 6.20 4.30 5.40 0.20 0.64 0.45
Calibformer [10]  [—0.25m,0.25m] / [-10°, 10°] 1.10 0.90 1.56 0.08 0.26 0.09
CalibDepth [13] [—1.5m, 1.5m] / [—-20°, 200] 1.31 1.02 1.17 0.06 0.23 0.08
LCCNet [6] [~1.5m,1.5m]/[-20°,20°] 026 036 035 002 0.l 0.03
CMRNext [1] [—1.5m,1.5m]/[-20°,20°] 112 083 079 004  0.04 0.04
Ours [—1.5m, 1.5m] / [-20°,20°] 0.25 0.41 0.87 0.02 0.13 0.04

Table 1. Comparison of calibration results applied to the single-Vehicle dataset KITTI-odometry [3].
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Figure 2. Query features from the volume and iteratively update.

gregate similarity values within a radius r around the pixel
b. r is set to 4 in our network.

Bidirectional Mamba Block: The bidirectional Mamba
architecture consists of forward and backward modules [2,
14]. The mathematical definition of a single Mamba module
is as follows [4]:

h'(t) = Ah(t — 1) + Bx(t)
y(t) = Ch(t)

The continuous system is discretized here using zero-order
hold (ZOH).
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In mamba, a more efficient convolution mode is intro-

duced, which bypasses the state computation and imple-
ments a convolution kernel.
= (CB,CAB,...,CA*B, ... ©)
g=zxK
where K is a structured convolutional kernel.
Further, we adopt a bidirectional Mamba design in our
network, as shown in Fig. 3. As described in our paper,
after obtaining a series of calibration flows, we divide the
calibration flow into patches for input. Specifically, we use
a 5-frame image sequence and iterate 10 times, resulting in
50 calibration flow maps. The patch size is set to 16 x 16.
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Figure 3. Bidirectional mamba architecture.

4. More Experimental Results
In this section, we present additional experimental results.

4.1. Directly transfer to the single-vehicle dataset

Our method can naturally transfer to the single-vehicle
LiDAR-camera calibration problem. As mentioned ear-
lier, in single-vehicle scenarios, translation deviation is non-
negligible relative to the LiDAR-camera distance. There-
fore, we incorporate a translation error estimation at the
output of the original network, and the results are shown
in Tab. 1. The results show that although our method was
originally designed to address roadside camera calibration
in V2X scenarios, it remains competitive in single-vehicle
scenarios.

4.2. Robustness Under Slight Translation Noise

We further demonstrate through experiments that our
method can accurately calibrate rotational deviations in
V2X scenarios even in the presence of slight translation, as
shown in Tab. 2

Initial Translation Error (cm) Mean (°) Std (°)
(0,0) 0.267 0.280

(—=2,+2) 0.280 0.267

(—5,45) 0.263 0.294
(—10,+10) 0.326 0.389

Table 2.  Calibration results of rotational deviation within
(—5°,+5°) under different slight translations on TUMTraf-V2X
dataset [15].



4.3. More comparative experimental results

We further evaluate our method against traditional LiDAR-
camera calibration approaches [5] in the V2X scenario us-
ing the V2X-Seq dataset [11]. To ensure fairness, we con-
duct two experiments.

In the first, we manually set the initial rotation noise to
match our method. As shown in Fig. 4, the result indicates
that traditional methods offer little to no improvement in
V2X settings. In the second, we follow the original setup
using SuperGlue [7] to estimate initial extrinsics. The cali-
bration result shows a large error of 126.0021°, suggesting
that the method performs poorly.

Figure 4. Calibration result (Left) of a traditional method [5].
Groud Truth (Right).

These results highlight the advantage of our method.
This is mainly due to the sparse and repetitive scan pat-
tern of spinning LiDARs, which limits reliable geometric
and texture information from a single scan [5]. In V2X set-
tings, vehicles are in motion and cannot accumulate multi-
ple frames, making this calibration method ineffective.

4.4. Time and memory cost

Iteration is the key factor influencing the network’s scale,
runtime, and memory usage, with higher iterations gener-
ally improving accuracy (see Tab. 3). We performed ab-
lation studies comparing our Mamba-based method and
the Timesformer-based method at different iteration lev-
els. Fig. 5 shows that as iterations increase, our method’s
memory inference cost becomes significantly lower than the
Transformer-based approach, aligning with prior Mamba
research. At low iterations, peak memory remains nearly
unchanged since peak usage doesn’t occur within the
Mamba or Transformer modules during inference. Run-
time increases similarly for both methods as iterations grow.
Notably, the parameter reduction and accuracy gains over
Timesformer are substantial and should not be overlooked.
Overall, our method demonstrates clear advantages and
strong potential.

4.5. Calibanyting on TUMTraf-V2X

Fig. 6 shows the result of our method (Left) and CalibAny-
thing (Right) on the TUMTraf-V2X dataset [ 15], with initial
error within 5°. Our method performs significantly better.
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Figure 5. Time and peak memory cost during inference.

Iterations Mean (°) Std (°)
1 0.70 1.61
10 0.63 0.32
20 0.61 0.21

Table 3. Effect of iteration count on calibration accuracy.

Figure 6. Calibanyting result on TUMTraf-V2X [15].

4.6. Patch-based or flatten

Tab. 4 compares three strategies for processing the calibra-
tion flow map. The results show that our method achieves a
clear and significant advantage.

Methods Mean (°) Std (°)
patch+Mamba 0.63 0.3
directly project+Mamba 0.71 0.36
flatten+MLP 0.97 2.0

Table 4. Different calibration flow map processing strategies.

4.7. Qualitative results after calibration

Fig. 8 shows additional calibration results on the V2X-Seq
dataset using MamV2XCalib. Our method can effectively
address the issue of large deviations. Fig. 9 presents the vi-
sualization results where LCCNet [6] calibration fails dra-
matically, while our method succeeds. It is evident that our
method demonstrates stronger robustness. In Fig. 10, we
present additional calibration results on the TUMTraf-V2X
dataset [15].

4.8. Results of the multi-range network iteration

Our method involves two iterative processes. On one hand,
the calibration flow is iteratively updated through the GRU



module. On the other hand, during inference, we adopt the
iterative alternation method of extrinsic parameter estima-
tion and re-projection, consistent with previous works [6].
This process utilizes five models with identical structures
trained under different ranges of deflection initializations.
In Tab. 5, we provide detailed results after each network.

Mean (°) Std (°)
Network  Total Roll Pitch Yaw Total Roll Pitch Yaw

After £20° 231 046 140 134 173 037 1.62 124
After £10° 121 027 076 0.71 136 0.18 134 0.58
After £5° 096 027 041 071 0.70 0.17 054 0.58
After £2°  0.73 023 035 049 044 015 023 048
After +1° 063 0.19 024 048 032 0.15 0.19 0.35

Table 5. The results of the multi-range network iteration.

4.9. Vehicle LiDAR vs Vehicle Camera

In implementing the V2X-based calibration strategy, we
chose point clouds for vehicle-side data. Although point
cloud data introduces challenges in cross-modal data pro-
cessing, combining it with distance filtering methods can
ensure a high degree of overlap between vehicle and road-
side data. Fig. 7 compares the projections of all point clouds
and those within the range of the vehicle’s front-facing cam-
era into the perception range of the roadside camera. It is
clear that the 360-degree LiDAR helps achieve a greater
data overlap compared to a single onboard camera.

Figure 7. Projection (after 8 x 8 max pooling) of the point cloud
within the forward-facing camera’s range (left) and the entire point
cloud in the roadside camera’s viewpoint (right).

5. Generalization

Similar to other deep learning-based LiDAR calibration
methods, our approach requires appropriate fine-tuning
when extending to other datasets. Fortunately, roadside
camera image data for calibration is easily accessible, and
the usage scenarios for the same camera are relatively fixed.
This facilitates fine-tuning on new datasets to achieve opti-
mal calibration performance.
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(a) Ground Truth (b) Before Calibration (c) MamV2XCalib

Figure 8. Qualitative LIDAR/Camera reprojection results on V2X-Seq dataset.
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Figure 9. The failure of single-vehicle calibration methods [6] in V2X scenarios, while our method succeeds.




(a) Ground Truth (b) Before Calibration (c) MamV2XCalib

Figure 10. Qualitative LIDAR/Camera reprojection results on TUMTraf-V2X dataset.
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