A. More Implementation Details

Local Query Refinement. After obtaining the initial
queries, we refine them through a series of decoder layers
inspired by PQ3D. Specifically, within each decoder layer [,
our goal is to better retrieve object-relevant information by
enhancing the interaction between the object queries Q! and
the input features {F2P, F3P}. To achieve this, we first
employ a cross-attention mechanism, allowing the object
queries Q! to attend to the input features { F2P, F3P}. This
step is crucial for aggregating relevant information from
both 2D and 3D features.

To further improve the efficiency and performance of the
cross-attention, we adopt a masked attention mechanism.
This restricts the attention scope to localized features cen-
tered around each query, ensuring that the queries focus
only on relevant regions rather than the entire feature map.
This approach not only enhances the model’s ability to cap-
ture fine-grained details but also significantly reduces com-
putational overhead by limiting the attention span.

Following the cross-attention, we introduce a spatial
self-attention module. This module leverages the coordi-
nates of the queries to explore their spatial relationships,
enabling the model to better understand the positional con-
text of each query. By incorporating spatial information,
the model can more effectively distinguish between differ-
ent objects and their locations within the scene.

Each attention layer is followed by a forward feed net-
work (FFN) and a normalization layer to stabilize the train-
ing process and enhance the representation learning capa-
bilities of the model. The entire process within a single de-
coder layer can be formulated as follows:

Qi/ = FFN (Norm (Qi + Z CrossAttn(Q!, F)))

FeF;y,
(L

I+1 _ FFN (Norm (spatialselfAtm(Qi'))) 2)

After L decoder layers, the refined local queries Q{‘
are expected to effectively capture the current observations.
These refined queries encapsulate both the spatial and se-
mantic information from the input features, making them
highly representative of the objects within the scene.
Query Matching and Fusion. In our approach, we intro-
duce a Dynamic Spatial Memory Bank to efficiently man-
age and update the queries across steps. Through extensive
experiments, we observe that geometric similarity alone is
often sufficient for matching queries. This observation mo-
tivates our design to leverage the geometric information
of object queries to establish correspondences between the
current queries and previous queries.

Given the current local queries QF and previous global
queries QY ;, we can obtain their respective bounding
boxes: the current local bounding boxes B € RM*6 and
the historical global bounding boxes BY ; € RV*6, Here,
M and N represent the number of local and global queries,
respectively.

Our model is designed to predict global geometry based
on partial input, thanks to a box loss function that aligns the
predicted bounding boxes with ground-truth global values.
This capability is crucial for establishing correspondences
between the current and previous queries, even when only
partial information is available.

To measure the similarity between the current local
queries and previous global queries, we compute the Inter-
section over Union (IoU) matrix C between the bounding
boxes B and BY ;:

C =1oU(BF,BY ) 3)

Here, IoU(+, ) denotes the element-wise IoU score be-
tween two sets of axis-aligned bounding boxes. To ensure
robust matching, we set elements in C' that are smaller than
a predefined threshold e to —oo. This step effectively filters
out low-confidence matches and focuses on high-similarity
pairs.

We then perform matching between B and BE | based
on the cost matrix —C'. Each current local bounding box
bE is assigned to a previous global bounding box b¢ ; if
their similarity score is above the threshold. If a new lo-
cal bounding box BF[i] fails to match with any previous
global bounding box b¥ |, we register the corresponding
query ¢l[i] into the global queries as a new entry. This step
ensures that newly detected objects are incorporated into the
global representation.

For matched query pairs, we perform fusion to update
the global representation. Specifically, instance segmenta-
tion masks m; are fused through a union operation to main-
tain the most comprehensive segmentation information. For
other representations, such as bounding box coordinates, we
adopt a weighted average fusion strategy:

n 1

B{li] = mBﬁﬂi] + thLU] “4)
Here, we assume that the j-th current local query is
matched with the ¢-th previous global query. The variable
n denotes the number of queries that have been merged into
Q% ,[i] so far. This weighted average approach ensures that
the global representation is updated smoothly, incorporating

new information while retaining historical context.
Spatial Reasoning. The Spatial Reasoning Transformer
is designed to integrate spatial context and language in-
structions for effective reasoning. It shares a similar trans-
former architecture with the local query refinement module
but includes additional mechanisms to incorporate language



Figure 7. Real world trajectory.

Kinect
Camera

Jetson
Orin

Mobile
Robot

Figure 8. Real Device.

goals. Specifically, the transformer operates on concate-
nated global and frontier queries, denoted as Q¢ and Qf
respectively, to form the initial queries Q?:

Qf = Concat(Q{,Qf) (5)

For each decoder layer [, the queries first attend to the
input features Fj, to aggregate spatial information from
the current observation. This is achieved through a cross-
attention mechanism followed by normalization and a feed-
forward network (FFN):

I = FFN (Norm <Qft + Z CrossAttn(Q!, F)))

FeFi,
(6)

Next, an additional cross-attention layer is introduced to
incorporate the language goal L. This step allows the model
to align its spatial reasoning with the provided language in-
structions:

iu = FFN (Norm (Q{ + CrossAttn(th/, L))) (7

Finally, a spatial self-attention layer is applied to capture
the spatial relationships among the queries, further refining
their representations:

I+1 — FFN (Norm (SpatialSelfAttn(Qi”)» (8)

Through the process, the Spatial Reasoning Transformer
effectively fuses spatial and linguistic information for fur-
ther exploration decision.

B. Benchmarks and baseline

HM3D-OVON. HM3D-OVON is an open-vocabulary nav-
igation benchmark. Due to its large-scale test set and re-
source limitations, we random sample 360 episodes for
evaluation. For baselines, BC trains the agent using super-
vised learning on expert trajectories. DAgger involves an
expert providing corrective actions online during training.
RL, BCRL, and DAgRL represent reinforcement learning
from scratch, reinforcement learning initialized with behav-
ior cloning, and reinforcement learning with DAgger, re-
spectively. Uni-Navid is a video-based navigation method,
while TANGO is a training-free navigation approach that
leverages large language models.

Goat-Bench. Goat-Bench evaluate multi-modal life long
navigation, goals include image, class, and description,
due to the large-scale test set and resource limitations,
we random sample 90 tasks for evaluation. Modular
Goat and Modular clip one wheels represent module ap-
proaches using pre-trained detector and feature for zero-
shot navigation. SenseAct-NN Skill Chain and SenseAct-
NN Monotholic are RL approaches, with single head or
multi head for each goat type.

SG3D. Sequential Navigation requires an agent to navigate
to a target object in a specified order within a 3D simula-
tion environment. The Embodied Video Agent is a modular



Algorithm 1 Explore an Episode

Global: explored_map, visited_frontiers, visible_ids
END type: Success, Unreachable, Invisible, Failure

1: function EXPLORE_AN_EPISODE(strategy, goals)
2: decision_list < []
3: while not END do
4: Spin and Update
5: goal < select closest goal in goals
6: visible <— goal in visible_ids
7: reachable < goal in explored_map
8: better_chance < exist frontier closer to goal
9: if visible and reachable then
10: Record decision and Goto goal, Success
11: else if better_chance then
12: Record decision and Goto next frontier
13: else if visible but not reachable then
14: Unreachable
15: else if reachable but not visible then
16: Invisible
17: else if not visible and not reachable then
18: Failure
19: end if
20: end while
21: status = END type
22: return (decision_list, status)

23: end function

approach that incorporates persistent memory and utilizes a
large language model as the planner. SenseAct-NN Mono-
lithic is identical to the variant used in Goat-Bench, em-
ploying a unified reinforcement learning policy for all goal
types.

A-EQA. A-EQA evaluates a model’s ability to explore an
environment in response to a given question. For A-EQA
evaluation, our model is solely responsible for generating
the exploration trajectory and collecting the corresponding
video for each question. The question answering itself is
handled by GPT-40/V. To ensure a fair comparison, we use
the same prompts and the same number of video frames as
the baseline methods when measuring exploration perfor-
mance.

C. Trajectory collection

Algorithm 1 outlines our trajectory collection strategy, in
which we randomly select each action to simulate the be-
havior of agents in HM3D. Relying solely on random or
ground-truth actions can lead to model overfitting.



