
Supplemental Material

A. Prompt Design
A.1. Annotate Prompt

Control a robot to perform manipulation tasks based on an image of a single object with marked keypoints and a text
instruction. The goal is to list the possible uses of the object and all key primitives in each stage.
Object Analysis
- Determine how many important parts of the object based on the usage and image. For example: - ”Important
parts of the Teapot”:

- Body: The main container for holding the tea or water.
- Lid: A cover for the opening at the top of the teapot to prevent spillage and retain heat.
- Handle: A grip for holding and pouring the teapot, often designed to insulate from heat.
- Spout: A narrow outlet for pouring the liquid from the teapot.
- Base: The bottom support of the teapot that ensures stability and contact with the surface.

Possible Uses
- According to the important parts above, determine how many usages of the object in image. For example:

- ”Possible Uses of the Teapot”:
- Pouring tea from the teapot.
- Filling the teapot with water.
- Place the fallen teapot upright.

Task Stages
- Break down each use into stages. For example:

- ”pouring tea from teapot”:
- 3 stages: ”grasp teapot”, ”align teapot with cup opening”, and ”pour liquid”

- ”put red block on top of blue block”:
- 2 stages: ”grasp red block”, ”drop the red block on top of blue block”

- ”reorient bouquet and drop it upright into vase”:
- 3 stages: ”grasp bouquet”, ”upright bouquet”, and ”align the reoriented bouquet with vase”

- ”open microwave door to heat food”:
- 6 stages: ”grasp microwave door handle”, ”pull door open along hinge axis”, ”grasp food”,
”place food container on turntable”, ”close door along hinge axis” and ”press start button”

Key Primitive Definitions
- List all candidate key primitives involved in each stage categorized as:

- *Main*: The reference point and principal orientation axis of the object, serving as the basis for defining its
spatial configuration. (e.g. Center of the teapot body + vertical axis.)

- *Anchor*: A specific point and axis used as a reference for defining the object’s pose during movement or
ensuring keypoint constraints are met at the end of a substage (e.g., Tip of the spout + pouring direction.).

- *Grasp*: The position and orientation of the end-effector when securely holding the object (e.g., Center of the
handle + approach direction for grasping).

- *Actuation*: The position and orientation of the end-effector required to trigger mechanical operations, such
as pressing, rotating, or toggling components (e.g., Center of the heating button + pressing direction).

- *Hinge*: The position and orientation of the end-effector used to manipulate articulated objects, typically
around a rotational axis (e.g., Center of the lid hinge + rotation axis direction).

- *Actuation*: The position and orientation of the end-effector required to trigger mechanical operations, such
as pressing, rotating, or toggling components (e.g., Center of the heating button + pressing direction).

- *Hinge*: The position and orientation of the end-effector used to manipulate articulated objects, typically
around a rotational axis (e.g., Center of the lid hinge + rotation axis direction).

Key Primitive Example
- Define key primitives for each stage. For example:
key primitives = [
{Type: Main, Pos: [x, y, z], Orientation: [dx, dy, dz], Stage: ”Pour Liquid”, Description: ”Global reference for
maintaining proper pouring orientation”},
{Type: Grasp, Pos: [x, y, z], Orientation: [dx, dy, dz], Stage: ”Grasp Teapot”, Description: ”Grasping the teapot
handle for secure hold”},
{Type: Anchor, Pos: [x, y, z], Orientation: [dx, dy, dz], Stage: ”Align Teapot with Cup Opening”, Description:
”Reference point and axis for positioning the teapot relative to the cup”}
Add more key primitive if needed]

Note:
- You do not need to consider collision avoidance. Focus on what is necessary to complete the task.
- *List all possible options thoroughly* when there are multiple reasonable candidate primitives.
- If the object has multiple possible uses, try to cover as many usage scenarios as possible, rather than just the most
obvious operation.
- When you annotate a point, you MUST label its corresponding orientation; vice versa.
- Prioritize vectors based on the object’s skeleton or intrinsic orientation, and then consider vectors representing
orientations that are not directly visible in the image.
- Do not contain the specific id of key points in the your output.
- The initial orientation may affect grasping points, annotate all available primitives. For example, if handles are
unusable, consider edges for grasping.
- Do not use ’...’ for omission in your output, list all usages and possibles.
- If the task involves multiple sub-operations, ensure that all stages are clearly labeled and avoid omitting any possible
intermediate steps (such as rotation, alignment, etc.)
- List all possible uses of the object, ensuring diversity and avoiding repetitive scenarios by considering:

- Interaction with typical objects (how the object interacts with other common objects in manipulation).
- Position or orientation adjustment (how the object’s position or orientation is adjusted for a specific purpose).
- Functional Demonstration (describe tasks that showcase the object’s functionality, such as pressing buttons,

turning knobs, or activating features to achieve a specific outcome.).
- Pay attention to identifying the **Actuation Point** of any special buttons or knobs. For example, use the button
to open the lid before heating a liquid (or filling with water).

- There are two sub-steps(locate the button then press the button) and two key primitives(button center area and
press orientation).

- If there are multiple buttons, please make sure to distinguish between them.(eg. the heating button or the lid
opening button)
- Special consideration for Actuation (execution) points: Differentiate between various types of control objects such
as buttons, knobs, sliders, and other mechanical interfaces.
- In this stage, you don’t need to fill in the specific value in Pos and Orientation, just let it be [x, y, z] and [dx, dy, dz]

Structure of python code block as follows:
List all important parts of the object based on the usage and image

A.2. Alignment Prompt

You are provided with semantic annotations of an object in the image and need to map these annotations to the
corresponding primitives detected in the image. Your goal is to generate a JSON annotation result that aligns the
semantic labels with the detected keypoints based on the following rules:

The Definition of Principal Orientation
- The principal orientation (X, Y, Z) are marked in different colors in the image. Ensure that you match the following
colors to the corresponding axes:

- X Axis: Red, +x: [1, 0, 0]; -x: [-1, 0, 0]
- Y Axis: Green, +y: [0, 1, 0]; -y: [0, -1, 0]
- Z Axis: Blue, +z: [0, 0, 1]; -z: [0, 0, -1]

Key Primitive Mapping
- If a key position is correctly identified, include the corresponding point in the ”points” attribute.
- Append a probability value to each point in the format {”pos ID”: n, ”pos Probability”: p}.
For example:

{”pos ID”: 1, ”pos Probability”: 0.75},
{”pos ID”: 2, ”pos Probability”: 0.85}.

- If multiple points represent the same position, list them all.
- If a key orientation is correctly identified, represent it with following two ways:

- Using Principal Orientation Labels for standard orientations (e.g., horizontal/vertical):
[0, 0, 1], [1, 0, 0]. For example, [0, 0, 1] means orientation towards the positive z-axis.
- Using Point-based orientation for object-specific orientations (e.g., spout orientation):
[x, y] (x, y is the ID of the keypoints, and the orientation is from point X to point)

- Append a probability value to the orientation in the format {”ori ID”: [x, y], ”ori Probability”: p} or {”ori ID”:
[0, 0, 1], ”ori Probability”: p}. For example: {”ori ID”: [1, 2], ”ori Probability”: 0.7}, {”ori ID”: [0, 0, 1],
”ori Probability”: 1.0}. If there are multiple pairs for the same orientation, list them all.

- Probability values indicate the confidence level of the point/orientation being correctly identified:
> 0.5: The point/orientation is worth considering but may need verification.
> 0.8: The point/orientation is highly accurate and can be trusted.

- Handling Missing or Erroneous Annotations:
- Use ”None” if the keypoint/orientation is not visible in the viewpoints.
- Use ”Error” if the keypoint/orientation is visible in the viewpoints, but no points annotated. (Re-detect is

required)

Note:
- Exclude Undetected Points: Do not include points that are not present in the image.
- Output Format: Only output the final JSON result without any additional text.
- The initial orientation may affect grasping points, annotate all available positions. For example, if handles are
unusable, consider edges for grasping.
- Identify and list as many effective points as possible.
- The point numbers are continuous and consistent across different viewpoints. Match the correct points and vectors
by aligning the point numbers across different perspectives.
- ”ori ID”: [x, y] (towards the target) and ”ori ID”: [y, x] (away from the target).
- Approach Orientation represents the end-effector movement towards the Grasp Point or Actuation Point. Ensure
orientation (e.g., ”ori ID”: [x, y] or ”ori ID”: [0, 0, -1]) point towards the target, not away from it. - For example,
USE ”ori ID”: [x, y] (towards the handle/neck), NOT ”ori ID”: [y, x] (away from the handle/neck), to avoid moving
the end-effector away from the manipulation point.
- In this stage, you don’t need to fill in the specific value in Pos and Orientation, just let it be [x, y, z] and [dx, dy, dz]

if handles are unusable, consider edges for grasping.
- Identify and list as many effective points as possible.
- The point numbers are continuous and consistent across different viewpoints. Match the correct points and vectors
by aligning the point numbers across different perspectives.
- ”ori ID”: [x, y] (towards the target) and ”ori ID”: [y, x] (away from the target).
- Approach Orientation represents the end-effector movement towards the Grasp Point or Actuation Point. Ensure
orientation (e.g., ”ori ID”: [x, y] or ”ori ID”: [0, 0, -1]) point towards the target, not away from it. - For example,
USE ”ori ID”: [x, y] (towards the handle/neck), NOT ”ori ID”: [y, x] (away from the handle/neck), to avoid moving
the end-effector away from the manipulation point.
- In this stage, you don’t need to fill in the specific value in Pos and Orientation, just let it be [x, y, z] and [dx, dy, dz]

Output Format
- Organize the annotations by type and format them in the required JSON structure:
JSON format your output for task description and key primitives
{

”Grasp”: [
{

”Stage”: ”Grasp Teapot”,
”pos ID”: n,
”pos Probability”: p 1,
”ori ID”: [x, y],
”ori Probability”: p 2
”Pos”: [x, y, z],
”Orientation”: [dx, dy, dz],
”Description”: ”Grasping the teapot handle for secure hold”

},
],
”Anchor”: [

{
”Stage”: ”Align Teapot with Cup Opening”,
”pos ID”: n,
”pos Probability”: p 1,
”ori ID”: [0, 0, 1],
”ori Probability”: p 2,
”Pos”: [x, y, z],
”Orientation”: [dx, dy, dz],
”Description”: ”Reference point and axis for positioning the teapot relative to cup”

},
]
”Hinge”: [

{
”Stage”: ”Open Lid”,
”pos ID”: n,
”pos Probability”: p 1,
”ori ID”: [0, 0, 1],
”ori Probability”: p 2
”Pos”: [x, y, z],
”Orientation”: [dx, dy, dz],
”Description”: ”Rotation center and axis for opening the lid”

}
]

}

B. Implementation Details
B.1. Manipulation Task Evaluation
To validate the effectiveness of PASG in robotic manip-
ulation, we conduct comprehensive evaluations using the
RoboTwin[38] simulation platform, open-source environ-
ment designed to emulate realistic robotic manipulation
scenarios. RoboTwin provides standardized benchmarks
that ensure both reproducibility and practical relevance.
Task Setting We evaluate PASG’s performance across six
representative manipulation tasks, including tasks requir-
ing dual-arm coordination and single-arm manipulations, as
well as interactions within cluttered environments. Specifi-
cally, the tasks are: (1) Block Hammer Beat, (2) Container
Place, (3) Dual Bottles Pick, (4) Empty Cup Place, (5) Pick
Apple, and (6) Messy Shoe Place.(see Fig. 6 for visual il-
lustrations and difficulty categories).

To provide a better understanding of these tasks, we
briefly describe each one below, accompanied by an illus-
trative figure showcasing the robot’s interactions. The tasks
are categorized by difficulty levels: hard, medium, and easy,
highlighting the range of challenges faced by PASG.
• Messy Shoe Place: The robot needs to grasp a shoe with

one hand. The main difficulty lies in the fact that the
shoe’s width is nearly identical to the width of the gripper,
resulting in a low tolerance for error.

• Dual Bottles Pick: This task requires dual-arm coordina-
tion to simultaneously pick up two bottles and maintain
balance while lifting them. It is a challenging task due to
the necessity for precise synchronization between the two
arms.

• Block Hammer Beat: The robot uses a hammer to hit
a block at a predefined position. This task evaluates fine
motor skills and the ability to manipulate tools effectively.

• Container Place: In this task, the robot picks up a con-
tainer and places it accurately at a designated location. It
is relatively easy because of the simple geometry of the
object.

• Empty Cup Place: The robot must handle a fragile and
lightweight object (a cup) and place it gently. The chal-
lenge is to maintain stability while carefully avoiding ex-
cessive force.

• Pick Apple: The robot is required to grasp a round and
slippery object (an apple) from a cluttered environment.
This is a medium-difficulty task that demands dexterity
and precise perception.

Automated Labeling Consistency with Human Usage
The two images in Figure 7 illustrate PASG’s ability to au-
tonomously label tools in a way that aligns with human us-
age conventions. In the case of the bottle, the labeled grasp-
ing points are distributed evenly around its circular body,
which ensures stability and effectiveness in gripping. For
the hammer, the annotated functional points are concen-

trated on the hammerhead, which is the intended area for
striking. These results highlight PASG’s comprehensive-
ness and its capability to capture both the functional and
practical aspects of tools, closely mirroring human under-
standing of their usage.

C. Additional Experiments
C.1. Reliability of VLM-Based Semantic Alignment
To assess the robustness of our VLM-based annotation
pipeline, we conducted a detailed hallucination analysis
over 844 annotations generated by GPT-4o across 100 di-
verse objects. We categorize potential annotation errors into
four types: (1) invalid label indices, (2) semantically unrea-
sonable suggestions, (3) missing functional labels, and (4)
output format violations.

Metric Invalid Label Index Unreasonable Interaction Missing Functional Labels Format Violation Total

Error Rate 0.40% ± 0.56% 6.67% ± 0.46% 0.80% ± 0.01% 0.00% ± 0.00% 844

Table 4. Error types in semantic annotations across 100 sampled objects
(844 outputs).

As shown in Table 4, GPT-4o maintains a low overall
hallucination rate, with most errors falling into the category
of semantically unreasonable but still structurally valid sug-
gestions. Notably, there were no format violations, validat-
ing its strong instruction-following reliability for structured
annotation generation.

C.2. Expanded Human Verification of Annotations
To further validate the annotation quality, we expanded our
human verification from 50 to 200 objects and introduced
more granular metrics. Each object was independently ver-
ified by three annotators.

Metric Accuracy Completeness Diversity

Keypoint Direction Consistency Object-level* Positional Functional Usage

Success Rate 98.70% ± 0.45% 98.39% ± 0.59% 92.69% ± 1.15% 72.28% ± 2.45% 92.52% ± 3.43% 97.00% ± 0.04% 97.00% ± 0.04%

Table 5. Expanded human verification results on 200 objects. Object-
level accuracy considers a failure in any sub-metric as incorrect.

These results confirm the annotation pipeline’s effective-
ness and robustness, supporting the integration of PASG-
generated annotations in real manipulation settings.

D. Author Contribution
Code Implementation Zhihao Zhu implemented the foun-
dational PASG framework and the automated pipeline.
SiYu Pan built upon this with extensive optimizations, in-
cluding prompt optimization and updates to the recognition
backbone, helping to refine the automated pipeline. Yi-
fan Zheng completed the benchmark design, model deploy-
ment, and testing code, as well as fine-tuning models. SiYu
Pan and Zhihao Zhu implemented the adaptation of PASG

Figure 6. Illustrations of the six representative manipulation tasks evaluated in PASG. From left to right and top to bottom, the tasks are:
Messy Shoe Place, Dual Bottles Pick, Block Hammer Beat, Container Place, Empty Cup Place, and Pick Apple. The tasks are categorized
by difficulty levels: the first two tasks are hard, the middle two are easy, and the final two are medium.

in simulation scenarios and constructed the testing pipeline
code. The code of Robotwin, SoM, Robocasa and LLaMA-
Factory accelerated the implementation.

Paper writing Zhihao Zhu and Yao Mu finished introduc-
tion and methodology sections of the paper. Yifan Zheng
and Zhihao Zhu wrote the experiments section. Zhihao
Zhu provided all the visualizations shown in the paper. Yi-
fan Zheng and Zhihao Zhu added results and analysis for
their corresponding parts. Yao Mu carefully reviewed and
revised the paper and gave feedback. Other authors help
proofread and provide feedbacks.

Experiments Yifan Zheng led the design and construction
of the benchmark, and completed experiments on model
fine-tuning and performance evaluation. Zhihao Zhu and
SiYu Pan co-led the performance evaluation experiments
in simulation scenarios, and also conducted experiments on
analysis and visualization.

Yao Mu is the main advisor of this project.

E. Limitation
While advantageous, PASG also has limitations. First, se-
mantic annotations may inherit hallucinations from GPT-
4o, despite our multi-round iterative refinement strategy.
This process incurs significant computational costs, moti-
vating future exploration of lightweight verification mecha-
nisms (e.g., human-in-the-loop validation or physics-guided
pruning) to enhance efficiency. Second, our framework
mainly focuses on rigid objects, whereas deformable or ar-
ticulated objects (e.g., hinged tools) also exhibit critical in-
teraction primitives. Extending PASG requires redefining
and adapting primitive categories to accommodate dynamic
shape variations. This remains an open challenge but aligns
with our ongoing efforts to broaden applicability.

Figure 7. (Left) Automatically labeled grasping points on a bottle. The grasp points are distributed around the bottle’s circular body,
aligning with human intuition for stable and effective grasping. (Right) Automatically labeled functional points on a hammer. The points
indicate the striking area at the hammerhead, which corresponds to its intended use for hitting objects. These annotations demonstrate
PASG’s capability to identify functional and practical areas of tools autonomously.

