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1. Flare and Glare Templates and Comparison
Fig. 1 presents five real camera systems from the 15 real
camera systems in our PBFG dataset, illustrating their lens
layouts and corresponding flare patterns. Fig. 2 shows syn-
thetic glare patterns generated by combining glow, shim-
mer, streak, and starburst with random weights. Our PBFG
dataset provides rich annotations for glow, shimmer, streak,
starburst, light sources, and flares, facilitating tasks such as
night glare component segmentation and light source ex-
traction. Integrating these annotated images into training
datasets for other night vision models enhances their robust-
ness and generalization, particularly in handling complex
night scenes with diverse glare and flare patterns. Thus, our
PBFG dataset serves as a vital resource for advancing night-
time computer vision applications.

2. Implementation of Histogram-Matching
Processing Module

Histogram-matching (HM) processing module aligns the
cumulative distribution function (CDF) of the target image
X with that of a reference Y via a monotonic mapping.
Given normalized histograms pX(x) and pY (y), the CDFs
are:

FX(i) =
∑
x≤i

pX(x), (1)

FY (j) =
∑
y≤j

pY (y). (2)

The mapping is:

h(i) = min {j |FY (j) ≥ FX(i)} , (3)

refined via interpolation to produce the transformed image
X ′ = h(X). This is applied per channel for accurate his-
togram alignment. To clarify, the HM module and ground
truth images were not used during training or validation, so
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no data leakage occurred. HM is applied only post hoc to
improve stylistic consistency with the GT.

3. Implementation, Rationality and Validity of
Enhanced Ground Truth (GT)

The public GT has known limitations [2], including residual
artifacts near light sources. To ensure a more accurate eval-
uation, we manually refine these low-quality GT images. In
Photoshop, we mask residual areas, adjust saturation, and
apply dehazing to reduce highlights. Then, we sample col-
ors to identify shifts and fine-tune brightness and satura-
tion to restore natural tones, eliminating artifacts while pre-
serving structure. Table 1 compares two networks evaluated
with both the original and enhanced GTs. In the first row,
PSNR drops from 30.142 dB (original GT) to 26.890 dB
(enhanced GT) because Flare7K++ fails to remove these
artifacts, making its output similar to the original GT and
inflating PSNR (blue grids). Our method removes these ar-
tifacts more effectively, leading to higher PSNR with the
enhanced GT (green grids). The enhanced GT does not
simply favor our method—Flare7K++ also aligns better in
some cases (yellow grids), showing it offers a fairer evalua-
tion. Image indices 004 and 045 correspond to the top and
bottom samples in Fig. 7 in the main paper.

4. More Experimental Results

4.1. Similarity Between PBFG and Real Datasets

To verify the similarity between our PBFG dataset and real-
world datasets, we conduct a t-SNE analysis. As shown in
Fig. 3, the left plot shows strong overlap between PBFG
and real datasets, indicating a similar feature distribution.
PBFG’s scattered points reflect greater diversity due to its
use of various aperture blades, unlike Flare-R and Flare600.
t-SNE results on PBFG labels (glow, shimmer, streak) show
clear clusters, confirming its quality, diversity, and utility
for glare-related tasks.
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Figure 1. Flare patterns in the PBFG dataset for different lens systems. Top: lens layouts with black lines for apertures, yellow for light
entrance, and green for sensors. Middle: flare patterns with six-blade apertures. Bottom: flare patterns with circular apertures.
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Figure 2. Glow, shimmer, streak, starburst, and compound glare patterns synthesized with our computational rendering scheme.



Image
Index

Network
Original GT / Enhanced GT (Ours)

PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑

004
Flare7K++ 30.142 / 26.890 0.913 / 0.901 0.0321 / 0.0312 26.522 / 21.483 27.257 / 23.032

FGRNet (Ours) 29.417 / 32.105 0.914 / 0.943 0.0327 / 0.0274 23.616 / 29.283 24.726 / 28.751

045
Flare7K++ 30.023 / 30.125 0.956 / 0.955 0.0211 / 0.0142 29.067 / 28.682 25.443 / 27.520

FGRNet (Ours) 31.553 / 32.354 0.960 / 0.960 0.0220 / 0.0159 31.049 / 30.969 27.963 / 31.105

Table 1. Comparison of artifact removal results trained using Flare7K++ and our FGRNet, evaluated using both original and enhanced GT
images. Image indices 004 and 045 correspond to the top and bottom samples in Fig. 7 of the main paper, drawn from the test set.
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Figure 3. t-SNE analysis of our PBFG dataset and real datasets.

4.2. Data Augmentation
Dai et al. [2] present the most relevant and advanced ap-
proach to our work. We adopt their data augmentation strat-
egy to generate flare- and glare-corrupted images. Back-
ground images are sourced from Flickr24K [7]. To lin-
earize the background, flare, glare, and light source im-
ages, we apply inverse gamma correction using U(1.8, 2.2).
The background image undergoes random RGB adjustment
with U(0.5, 1.2) and Gaussian noise addition, where the
noise variance follows a scaled chi-square distribution σ2 ∼
0.01χ2. We select random flare and glare patterns from
our PBFG dataset and combine them to create a compound
image. This compound image is subjected to a series of
affine transformations, including random rotation U(0, 2π),
shear U(−π/9, π/9), scaling U(0.7, 1.5), and translation
U(−100, 100). Additionally, we apply random Gaussian
blur with a size in U(0.1, 3), color offset U(−0.02, 0.02),
and perform random horizontal and vertical flips. Both
the adjusted background image and the transformed com-
pound image are then clipped to the range [0, 1]. They are
combined to generate the final flare-/glare-corrupted image,
which is also clipped to the range [0, 1].

4.3. Comparison with Existing Dataset
Fig. 4 shows that models trained on the PBFG dataset out-
perform those trained on previous datasets in removing real-
world flare and glare artifacts, validating the realism and ef-
fectiveness of our dataset. The first four rows illustrate that
models trained on PBFG effectively remove complex arti-
facts, including prominent and subtle streaks, and off-frame
stray light source-induced veiling glares or streaks. In con-
trast, models trained on existing datasets struggle with sub-

Training Dataset Model PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑

Flare7K++ [2]

Uformer 27.316 0.889 0.0453 23.543 22.181
Uformer + SRU 27.419 0.892 0.0444 24.396 22.451
Uformer + FEU 27.893 0.896 0.0440 24.576 23.215
FGRNet (Ours) 28.318 0.898 0.0433 24.830 23.582

PBFG (Ours)

Uformer 27.920 0.896 0.0455 24.330 23.115
Uformer + SRU 27.965 0.896 0.0458 24.540 23.197
Uformer + FEU 28.307 0.896 0.0432 24.641 23.935
FGRNet (Ours) 28.659 0.898 0.0426 25.444 24.385

Table 2. Quantitative comparison of FGRNet components without
the HM module trained on Flare7K++ and our PBFG datasets. The
best results are in bold.

tle streaks, leaving residual artifacts. This improvement is
due to our advanced streak synthesis scheme, which accu-
rately removes streaks of varying sizes and intensities. The
last two rows demonstrate that PBFG-trained models effec-
tively remove large glow areas with streaks, thanks to our
physically-based synthesis and spectral integration, which
realistically simulate glare color transitions. In contrast,
existing non-physical datasets replicate only the shape of
the glow, failing to capture spectral color variations. These
findings highlight our dataset’s superior capability to en-
hance model robustness and accuracy in complex nighttime
scenes.

4.4. More Quantitative Comparisons

FGRNet Performance without HM. GT and the HM mod-
ule are unavailable in real scenarios, but FGRNet alone
achieves strong visual results. Table 2 shows the perfor-
mance of FGRNet components without the HM module.
While HM enhances style consistency with GT, its absence
does not affect the effectiveness of our method on flare and
glare removal.

Results on Synthetic Test Set. Table 3 shows our method
outperforms all Flare7K++-trained methods on the syn-
thetic test set, especially in G-PSNR and S-PSNR for glare
and streak removal.

Efficiency Analysis. Table 4 shows the efficiency analysis
on an NVIDIA RTX 3090 with 512 × 512 images. Fea-
turing layer depths of [1, 2, 2, 2] and a lightweight SFEM
module, FGRNet delivers superior removal with marginal
overhead, making it suitable for real-world deployment.



Real Input Wu et al. [6] Flare7k [1] Flare7k++ [2] Ours

Figure 4. Visual results on real-world images. The same model is trained on different datasets [1, 2, 6] for lens flare and glare removal,
with our dataset yielding the best performance.



Method PSNR↑ SSIM↑ LPIPS↓ G-PSNR↑ S-PSNR↑
Flare7K++ [2] 29.498 0.962 0.0210 24.686 24.155
Zou et al. [8] 29.224 0.956 0.0244 24.489 24.401
Flare-Free Vision [4] 29.521 0.960 0.0234 24.513 24.217
Sparse-UFormer [5] 29.584 0.959 0.0229 24.379 24.591
FGRNet (Ours) 29.722 0.960 0.0215 24.945 24.756
FGRNet + HM (Ours) 30.135 0.967 0.0235 25.228 25.178

Table 3. Quantitative evaluation on synthetic nighttime images.
The best results are in bold, and the second-best results are
underlined.

Method Params. (M) FLOPs (G) Time (s) Train Iters. (K)

Wu et al. [5] 34.51 261.95 0.0956 1200
Flare7K [1] 20.46 161.08 0.0556 1200
Flare7K++ [2] 20.46 161.08 0.0556 300
Flare-Free Vision [4] 154.81 274.32 0.1842 417.5
FGRNet (Ours) 34.39 160.21 0.0570 400

Table 4. Model complexity and training efficiency comparison
across methods. The best results are in bold, and the second-best
results are underlined.

4.5. More Qualitative Comparisons
Figs. 5, 6, 7, and 8 show more visual comparisons of our
method and state-of-the-art methods [1, 2, 4, 5].
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Figure 5. Visual results of flare and glare removal on real-world nighttime dataset [3]. Competing methods leave noticeable residual
artifacts, while our approach effectively eliminates all flare and glare.

GTInput Flare7k [1] Flare7k++ [2] OursKotp et al. [4] Wu et al. [5] 

Figure 6. Visual results of flare and glare removal on a synthetic nighttime dataset [2].
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Figure 7. Visual comparison of flare and glare removal on the real-world nighttime dataset [2]. State-of-the-art methods [1, 2, 4, 5]
struggle to remove extensive glow and restore affected areas. In contrast, our method achieves more complete artifact removal and clearer
background restoration.
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Figure 8. Generalization capability of our dataset and method for flare and glare removal on real-world nighttime images [2]. The diversity
and physical realism of our PBFG dataset, combined with the comprehensive local and global feature extraction of FGRNet, ensure robust
generalization across diverse scenes.


