SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image
Segmentation

Supplementary Material

1. Motivation Details

Table 1. A preliminary experiment testing the impact of individual
clinicians, conducted for the optic cup segmentation on REFUGE2
test set under U-Net’s structure with Dice Score (%). The results
indicate that the segmentation performance is consistent for indi-
vidual clinician but varies significantly across different clinicians.

Clinician 1  Clinician 2  Clinician 3  Clinician 4
Model 1 71.28 60.28 47.67 52.25
Model 2 61.06 66.46 63.30 63.84
Model 3 52.30 62.29 69.30 64.06
Model 4 53.05 62.72 65.45 67.19

Medical image uncertainty is often reflected in the varying
user preferences, causing inconsistent annotations between
different clinicians. To further explore this, we conducted a
preliminary experiment to quantitatively demonstrate that in-
dividual clinicians exhibit consistent segmentation patterns,
while significant variation exists between different clinicians.
In this experiment, we trained U-Net models [5] using each
clinician’s annotations for optic cup segmentation with a
subset of the REFUGE2 dataset. This resulted in four dis-
tinct models (Model 1-4), each corresponding to a different
clinician (Clinician 1-4). Table 1 shows the segmentation
performance of each model when evaluated against different
clinicians. Notably, each model performed best when trained
and tested with the same clinician’s annotations, but its per-
formance dropped significantly when evaluated against other
clinician’s annotations.

These observations suggest that each clinician exhibits
a distinct and consistent annotation pattern, which directly
influences the performance of the segmentation model. For
example, Model 1 achieved its best performance when tested
on Clinician 1’s annotations, with a Dice Score of 71.28%.
However, its performance decreased substantially when eval-
uated against the annotations of Clinician 2, 3, or 4, with
scores as low as 47.67%. This trend persisted across all
models, indicating that segmentation performance declines
significantly when a model is trained on one clinician’s an-
notations and tested on another’s.

As each clinician’s annotation behavior is informed by
their specific preference, this finding suggests that adapt-
ing to these preference-driven behaviors could improve
preference-specific segmentation predictions. We further
hypothesize that not only are annotation patterns consistent
within individual clinicians, but their interaction behaviors
during interactive segmentation are also likely to be con-

sistent. This hypothesis motivated the development of the
SPA model, which is designed to adaptively learn and adjust
to each clinician’s specific preference through human inter-
actions. By dynamically incorporating clinician feedback,
SPA refines the segmentation process in response to individ-
ual interactions, aligning the model’s predictions with the
individual clinician preference.

2. Theoretical Proof

Let D =
u, where each interaction ru(j ) is generated i.i.d. from a
specific component A/ (j1,,02). The posterior probability
that the samples (interactions) DD comes from user (Gaussian
component) p is given by:
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The average log-likelihood of each interaction belonging to
user u is:
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As J — oo, the empirical average converges to the expected
value under the true distribution N (j1,,, 02):
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The expected log-likelihood difference between user u and
any other user 7 # u is expressed as the negative Kullback-
Leibler (KL) divergence:
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Combining this with Equation 2, we obtain the likelihood
ratio between user u and any other user i # u:
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Thus, the posterior distribution from Equation 1 for user u
becomes:
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Since p; # p,, or o? # o2 for i # wu, we have

DiL (N (ptu, 02) | N(piy0?)) > 0. As J — oo,

IKL divergence property: Dkp(A|B) > 0,Dkxp(A|B) =
0iff A=DB




Boxplot for Correction Proposal Similarity
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Figure 1. Representative Segmentation Candidates Converge Over Iterations. (a) Boxplot illustrating the similarity (measured by Dice
Score) between representative segmentation candidates across multiple iterations. (b) Visualization showing the disagreement among four
correction candidates at each iteration. Red regions indicate areas recognized by only one candidate as part of the target, light blue by two
candidates, and purple by three candidates. As iterations progress, areas of disagreement shrink and alignment increases, reflecting the
model’s adaptation to user interactions and the reduction of uncertainty over time, especially from iterations 2 to 6.

e~/PxL — () foreachi # u, leadingto P(U = u | D) — 1.
In other words, as J — o0, pa(z) — N (ftu, 02). Therefore,
the preference distribution py(z) can adapt to specific user
preferences based on new interactions. Since there is no
closed-form solution for updating 8 = {(pm, 02, 7m) 1M _,,
we use MLP blocks with six forward layers and ReLLU ac-
tivations to adjust these parameters, refining the preference
distribution pg(z) based on interactions. The preference
distribution pg(z) thus adapts effectively to individual user
preferences through interactions, enabling a personalized
segmentation model that aligns closely with diverse clinical
contexts and user expectations.

3. Implementation Details

To capture image uncertainty, we generate N = 48 predic-

tions by sampling from the preference distribution pé] ) (2).
48 predictions is experimentally the best to balance model
performance and computational cost. The Dice Score for
generating 24, 36, 48 predictions on REFUGE?2 after six
iterations are 83.05%, 84.70% and 86.22%. Therefore, we
choose to sample 48 predictions as the hyperparameter. Ad-
ditionally, we generate K = 4 representative segmentation
candidates to allow users to make a multiple-choice selec-
tion. This hyperparameter is set to 4 because it is commonly
used in high-stakes tests and is practical in various scenarios
[1]. As aresult, 4 is chosen as the number of representative
segmentation candidates in our medical setting. In addition,
we sample the most representative point from the representa-
tive segmentation candidate to prevent overfitting, although
the segmentation candidates can be directly used. The initial
interaction is uniformly selected from the area agreed upon

by all annotators. It mimics real-world user behavior, where
users first identify a rough target or shape and then refine the
boundaries.

In this work, we face the challenge of medical image
uncertainty, particularly when using multi-user annotated
datasets such as REFUGE2, LIDC-IDRI, and QUBIQ. Each
user’s annotation reflects their unique interpretations, leading
to inherent uncertainty in segmentations. To establish a
reliable ground truth for evaluating our SPA method, we
adopt a strategy that combines annotations from multiple
users. This approach allows us to capture the medical image
uncertainty associated with varying human preferences while
minimizing potential biases. It ensures model robustness and
generalisability.

The use of multi-user datasets is central to modeling med-
ical image uncertainty. While individual user annotations
are valuable, they can introduce personal biases or errors
and may not fully represent the range of clinical contexts or
human preferences. By combining multiple user annotations,
we are able to account for the diverse preferences that con-
tribute to uncertainty in medical images. This combination
reflects a more balanced and representative ground truth,
reducing the impact of any single user’s subjective interpre-
tation. Additionally, when only a limited number of users
(e.g., four in the LIDC dataset) are available, it becomes
crucial to use their combined annotations to better simulate
the diversity of clinical contexts. By integrating multiple
user annotations, we more accurately represent shifts in an-
notation conventions and clinical decision-making processes
that occur across different medical environments, thereby
capturing the uncertainty inherent in medical image analysis.

During the testing stage, for each image, we randomly



generated combinations of user annotations from the multi-
user annotated datasets. When four users provided annota-
tions, all possible combinations (individual, pairs, triplets,
and full set) were considered, resulting in 15 combinations (4
individual, 6 pairs, 4 triplets, and 1 full set). These combina-
tions were uniformly selected, ensuring equal representation
of all potential groupings. The selected annotations were
then fused to create a consensus segmentation. This fusion
involved averaging the chosen annotations to generate a prob-
ability map, which was subsequently binarized to form the
final segmentation mask. By incorporating multiple user
perspectives, this fused binary segmentation reflects the in-
herent uncertainty in the data and was used as the ground
truth for evaluating the SPA model.

4. Efficiency Analysis on Different Interactive
Models Details

Models that failed to reach the target Dice Score within the
limit were assigned an iteration count of ten. We provide the
failure rate statistics for REFUGE?2 dataset reaching Dice
70% and 80%, for LIDC reaching Dice 60% and 70% in
Table 4. It shows that our method, SPA, consistently achieves
fewer failure cases across datasets and thresholds.

Table 2. Failure rate for REFUGE?2 reaching Dice 70% and 80%,
for LIDC reaching Dice 60% and 70%.

| SAM | MedSAM | MSA | SAM-UVI | SAM-UV2 | SPA
REFUGE2 | 102% 282% | 11.7% 292% | 9.0% 272% | 105% 33.0% | 150% 38.1% | 47% 17.0%
LIDC | 294% 325% | 27.2% 29.8% | 29.1% 31.9% | 31.9% 34.9% | 27.9% 313% | 70% 13.0%

In addition, to further verify the generalization and ro-
bustness, we further demonstrate the number of iterations
required to reach specific Dice Score for different unseen
annotators in Table 3 . It shows that our approach, SPA, con-
sistently requires less iterations than other interactive models
to reach specific Dice Score on the REFUGE?2 dataset, re-
gardless of the annotator.

Table 3. Number of iterations required to reach Dice 75% and 84%
toward different unseen annotators’ (A, B, C).

|  SAM

6.85 870
276 5.87
172 4.08

| MedSAM |  MSA

739 931 | 678 876
209 503|249 557
166 358 | 1.56 3.64

| SAM-UVI | SAM-UV2 | SPA

690 864 | 625 833|564 7.69
270 542322 679 | 1.89 438
166 399 | 153 3.57 | 150 3.01

A
B
C

5. Representative Segmentation Candidate Sim-
ilarity across Interactions

In this section, we explore how the similarity between rep-
resentative segmentation candidates evolves over multiple
iterations of human interaction. Our multi-choice approach
generates distinct segmentation candidates after each iter-
ation, enabling users to guide the refinement process by
selecting the segmentation candidate that they find the most
appropriate based on their preference. This analysis inves-
tigates how these representative segmentation candidates

change as the model adapts to user feedback over time. For
illustration, we use the optic cup segmentation task from
the REFUGE?2 dataset. To facilitate comparison, we directly
used the raw K-means clustering results applied to the /V pre-

dictions {yﬁf >},§V:1. This approach allows us to evaluate the
inherent divergence or convergence of the candidates without
any post-processing adjustments. To quantify the similar-
ity between candidates, we computed the Dice Score as the
similarity matrix between each pair of K-means-generated
segmentation candidates for every image at each iteration.

Fig. 1 illustrates the evolution of representative segmen-
tation candidate similarity across six iterations. The boxplot
on the left displays the range of similarity scores across all
images, while the plot on the right provides a visual represen-
tation of areas where the four correction candidates disagree.
In this visualization, red areas correspond to regions identi-
fied by only one candidate as part of the target, light blue by
two candidates, and purple by three candidates.

In the first iteration, where no user feedback is involved,
the segmentation candidates are relatively similar, resulting
in a median similarity of approximately 0.952. This is be-
cause the model generates predictions based on the same
input features, leading to only minor variations among the
representative segmentation candidates. The visualization
(Fig. 1) confirms this, showing minimal divergence between
candidates, with areas of disagreement being small and con-
centrated mainly at the optic cup boundaries. After the
first human interaction (Iteration 2), the similarity between
candidates decreases significantly as the user’s feedback in-
troduces new corrections based on their preference. This
feedback causes the representative segmentation candidates
to diverge, contributing to different plausible segmentations.
The median similarity score drops to 0.939, as shown by the
noticeable increase in areas of disagreement (Fig. 1), partic-
ularly at the optic cup boundary. The diversity in candidates
at this stage reflects the model’s flexibility in generating a
range of segmentations in response to user interactions.

As the human interaction process continues, our model
refines its predictions based on user feedback. The correc-
tion candidates gradually converge as the model learns from
the user’s interaction and moves toward a more specific,
preference-aligned segmentation. This steady convergence
is evident in iterations 3 through 6 in Fig. 1, where the
similarity scores gradually increase. By the final iteration,
the candidates exhibit a high median similarity of 0.956,
surpassing that of the initial iteration. The visualization on
the right (Fig. 1) demonstrates this convergence as the ar-
eas of disagreement shrink significantly, particularly at the
boundary areas. This indicates that the model has effectively
adapted to the user’s interaction, reducing uncertainty in its
predictions and converging toward a consistent segmentation
aligned with the human preference.

This analysis provides valuable insights into how human



Table 4. SPA Achieves Superior Dice Score Improvements Across Iterations. Quantitative comparison of Dice Score improvements
between consecutive iterations for different interactive models. The “Overall Diff” column shows the total Dice Score improvement from
Iteration 1 to Iteration 6. SPA consistently achieves the highest performance gains, demonstrating its effectiveness in incorporating user

interaction for segmentation refinement.

Model Diff 1 Diff2 Diff3 Diff4 Diff 5 Overall Diff
SAM [3] -0.03  0.04 0.14 0.12 0.13 0.41
MedSAM [4] 0.43 0.45 0.04 0.06 0.04 1.02
MSA [6] 0.06  -0.01 0.01 0.05 -0.03 0.09
SAM-U V1 [2] | -0.09 -0.04 -0.04 0.05 0.05 -0.08
SAM-U V2 [2] | -0.11 0.00 0.06  -0.05 0.01 -0.09
SPA 1.05 0.34 0.36 0.16 0.15 2.07
Iteration 1  Iteration 2 1Iteration 3 Iteration 4 Iteration 5 1Iteration 6 Difference

SAM

MedSAM

MSA

SAM-U V2 SAM-U V1

SPA

Figure 2. SPA Outperforms Other Interactive Models in Prediction Refinement. Visual comparison of predictions from SAM, MedSAM,
MSA, SAM-U (V1, V2), and SPA models across six interaction iterations. The last column shows the difference between the final and initial
predictions. SPA exhibits the most significant changes between iterations, indicating its greater sensitivity to user interaction and improved

refinement of segmentation predictions.

interactions influence the evolution of correction candidates.
Initially, the candidates are similar because they are gener-
ated by the model alone, without any external corrections
from user preferences. However, once the user’s feedback
is introduced, the candidates diverge to reflect different po-
tential segmentations, capturing the information introduced
through the user’s interaction. Over time, the correction

candidates begin to converge as the model refines its pre-
dictions, steadily narrowing down the range of plausible
segmentations and aligning them more closely with user
preferences. This steady convergence reflects the success of
our multi-choice correction candidate approach, which ef-
fectively incorporates human feedback to refine the model’s
predictions toward more preference-specific segmentations.



6. Prediction Change After Interactions

In this section, we highlight the effectiveness of our SPA
model’s multi-choice correction candidate interaction strat-
egy, demonstrating how it outperforms other interactive mod-
els in terms of prediction refinement. The quantitative results
and visual examples illustrate how the model’s sensitivity
to clinician interactions leads to more substantial improve-
ments over iterations compared to other interactive models
like SAM [3], MedSAM [4], MSA [6], and SAM-U variants
[2].

Table 4 quantifies the changes in Dice Score (%) between
consecutive iterations for each model for the REFUGE2 op-
tic cup segmentation task. “Diff 1” refers to the improvement
from Iteration 1 to Iteration 2, “Diff 2" from Iteration 2 to
Iteration 3, and so on. The final column shows the overall
Dice Score difference between the first and last iterations for
each model, serving as a cumulative measure of how much
each model’s performance improved throughout the interac-
tive process. SPA consistently achieves higher Dice Score
improvements compared to all other models across almost
every iteration. For example, the first interaction yields a
substantial Dice Score increase of 1.05% for SPA, whereas
SAM, SAM-U, and MSA models exhibit marginal or even
negative changes in performance. The overall difference
for SPA is 2.07%, significantly higher than the next-best-
performing model (MedSAM with 1.02%).

Fig. 2 shows an visual example case comparing the
REFUGE?2 optic cup segmentation predictions of various
interactive models. Each row corresponds to a different
model, while the columns display the prediction results at
each interaction iteration (from Iteration 1 to Iteration 6).
The final column represents the difference between the last
and first predictions, highlighting how much each model’s
prediction has evolved due to clinician interaction. As shown
in the last column in 2, SPA exhibits the most substantial
change between the first and last predictions, indicating its
high sensitivity to clinician interactions. This responsiveness
suggests that the SPA model is more adept at refining its
predictions based on the provided feedback, leading to better
alignment with the user preference. In contrast, models such
as SAM, MedSAM, and MSA show more limited changes,
indicating less responsiveness to the interactive corrections
provided by the clinician.

The combined quantitative and qualitative evidence un-
derscores the superior effectiveness of SPA’s multi-choice
correction candidate approach. SPA is more responsive to
clinician interactions, leading to larger adjustments in its pre-
dictions and greater alignment with the user preference. This
higher sensitivity to clinician feedback, compared to other in-
teractive models, results in more meaningful improvements
in segmentation performance over time. SPA’s capacity to
integrate multiple correction candidates allows it to dynami-
cally adjust its predictions in response to clinician interaction,

enabling more effective refinement of segmentations. This
adaptability makes it particularly suited for clinical environ-
ments where human interactions are critical for achieving
preference-specific medical image segmentations.

7. Human User Study Details

In order to evaluate the efficiency of our SPA model com-
pared to the previous interactive model, MedSAM, we con-
ducted a detailed human evaluation study simulating real-
world medical image segmentation workflows. Five medical
professionals, each with over five years of graduate-level
expertise, participated in the study. Their task was to interact
with the models to refine predictions until they met their
clinical standards.

For the MedSAM model, participants were provided with
two types of prompts: Click and BBox. These prompts could
be used to include or exclude specific pixels in the target
segmentation, offering flexibility for achieving desired re-
sults. Participants were allowed to select the prompt type
that best suited their needs for each scenario, simulating the
decision-making process in clinical practice. In contrast, the
SPA model introduced a multi-choice interface designed to
streamline interactions. Instead of requiring manual pixel
inclusion or exclusion, SPA presented participants with sev-
eral correction candidates during each iteration. This design
allowed users to select the option that most closely aligned
with their expectations, reducing the cognitive and manual
effort involved in refining predictions.

Participants interacted with each model iteratively, mak-
ing adjustments until the predictions matched their desired
criteria. Throughout the study, we recorded two key metrics
for each model: (1) the total time required to achieve satis-
factory results and (2) the number of interaction iterations
needed to reach the final output. By averaging these metrics
across multiple cases, we were able to quantify and com-
pare the efficiency of SPA and MedSAM. This evaluation
demonstrated the potential of SPA’s uncertainty-aware, multi-
choice framework to improve the user experience in medical
image segmentation. The results suggest that SPA can signifi-
cantly reduce the time and effort required to achieve accurate
segmentation, while also offering greater adaptability to the
needs of medical professionals.

8. Visualization for Prediction Alignment with
Clinicians

Fig. 3 illustrates a visual comparison of the differences
between SPA’s segmentation predictions and individual clin-
icians’ annotations over six iterations. The focus is on how
the model’s predictions evolve with human interaction, com-
paring included clinicians with excluded clinicians. In Itera-
tion 1, the dark purple areas represent the initial differences
between the model’s predictions and the clinicians’ anno-
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Figure 3. SPA Demonstrates Visual Prediction Alignment with Clinician Annotations. The figure illustrates the differences between
SPA’s optic cup segmentation predictions and individual clinicians’ annotations in the REFUGE?2 dataset across multiple interaction
iterations. Dark purple represents the initial differences between the predictions and clinician annotations. Light purple indicates the overlap
of differences between the first and sixth interactions, while blue shows new differences that emerge in the sixth iteration. The results
demonstrate that the model increasingly aligns with included clinicians and diverges from excluded clinicians over time.

tations. By Iteration 6, the light purple regions show the
overlap between the differences observed in Iteration 1 and
the updated differences in Iteration 6, indicating which dis-
crepancies remain consistent across iterations. The blue
areas highlight new differences introduced in Iteration 6 that
are not present in the first iteration. For included clinicians,
the light purple areas shrink, signifying that the model’s pre-
dictions are becoming more aligned with their annotations.
In contrast, for excluded clinicians, the blue regions grow,
showing that the model’s predictions are diverging from their
annotations. This visualization effectively demonstrates how
the model refines its predictions over interactions, aligning
more closely with the annotations of included clinicians
while progressively moving away from those of excluded
clinicians.
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