
SegmentDreamer: Towards High-fidelity Text-to-3D Synthesis with Segmented
Consistency Trajectory Distillation

Supplementary Material

To provide proofs of SegmentDreamer and visual com-
parisons of state-of-the-arts, this supplementary material in-
cludes the following contents:

• Section A: Guided Consistency Sampling Loss
• Section B: Flaws in the Consistency Function of Guided

Consistency Sampling
• Section C: Oversaturation and Artifacts in GCS
• Section D: How to Connect SCTD with SDS
• Section E: Computation Reduction Trick
• Section F: Proof of Upper Bound of Distillation Error
• Section G: Visual Comparisons of State-of-the-arts

A. Guided Consistency Sampling Loss
The Guided Consistency Sampling (GCS) loss [2] is com-
posed of a compact consistency loss LCC, a conditional
guidance loss LCG, and a pixel-wise constraint loss LCP,
which are defined by

LCC(θ) = E[
∥∥Gθ(z̃

Φ
t , t, e, ∅)−Gθ(ẑ

Φ
s , s, e, ∅)

∥∥2
2
],

LCG(θ) = E[
∥∥Fθ(ze, e, ∅)− Fθ(Gθ(z̃

Φ
t , t, e,y), e, ∅)

∥∥2
2
],

LCP(θ)=E[
∥∥D(Fθ(ze, e, ∅))−D(Fθ(Gθ(z̃

Φ
t , t, e,y), e,y))

∥∥2
2
],

(1)
where e < s < t, z̃Φt is estimated by the following tra-
jectory: ze = αtz0 + σtϵ

∗ → z̃Φs = Φ(ze, e, s, ∅) →
z̃Φt = Φ(z̃Φs , s, t, ∅), ẑΦs = Φ(z̃Φt , t, s,y), and D denotes
the VAE decoder.

B. Flaws in the Consistency Function of
Guided Consistency Sampling

As we know, given a well-trained diffusion model ϕ, there
exists an exact solution from timestep t to e [5]:

G(zt, t, e,y)=
αe

αt
zt+αs

∫ λe

λt

e−λϵϕ(ztλ(λ), tλ(λ),y)dλ,

(2)
where λt = lnαt

σt
and tλ denotes the inverse function

of λt. Inspired by [8], we find Eq. (6) suggests that
GCS aims to optimize a 3D representation θ such that
Gθ(zt, t, e, ∅) = Gθ(ẑ

Φ
s , s, e, ∅) for ∀t, s, e ∈ [0, T ] where

t > s > e. This implies ϵϕ(zt, t,y), as defined in
Eq. (5), is not an approximation but an exact solution learn-
ing related to the 3D representation θ, i.e., ϵϕ(zt, t,y) =∫ λe

λt
e−λϵϕ(zc

tλ(λ),tλ(λ),y)dλ∫ λe
λt

e−λdλ
. However, dropping the target

timestep e in ϵϕ(zt, t,y), as GCS does, is problematic.
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Figure 1. Analysis on self- and cross-consistency in GCS (a), and
visual analysis of oversaturation and artifacts (b)-(d).

Suppose we predict both ze and ze′ from zt where t > e′ >
e, we must have

ϵϕ(zt, t,y) =

∫ λe′

λt
e−λϵϕ(ztλ(λ), tλ(λ),y)dλ∫ λe′

λt
e−λdλ

ϵϕ(zt, t,y) =

∫ λe

λt
e−λϵϕ(ztλ(λ), tλ(λ),y)dλ∫ λe

λt
e−λdλ

.

(3)

Clearly, without the target timestep in ϵϕ(zt, t,y), opti-
mizing a 3D representation θ to satisfy both conditions in
Eq. (3) for all intervals [e, t] is invalid. For GCS, as the
number of training steps increases, the above unreasonable
phenomena occur frequently, potentially resulting in poor
distillation results.

C. Oversaturation and Artifacts in GCS
Fig. 1 shows that the cross-consistency loss LCG+LCP (with
LCP dominating) greatly exceeds the self-consistency loss
LCC. As shown in Fig. 1, we scale down LCP (c) and ob-
serve that the oversaturation (b) is alleviated, but undesir-
able geometry persists (red circle). This suggests that such
oversaturation is brought from an excessively large value of
cross-consistency loss, i.e., the “excessive conditional guid-
ance,” which has been analyzed in Sec. 4.1. In contrast, our
LSCTD (d) successfully addresses the above issues.

D. How to Connect SCTD with SDS?
As described in Sec. 4.3, given any subtrajectory
[sm, sm+1], Gθ(zt, t, sm,y) := Gm

θ (zt, t,y) =
αsm

αt
zt −

αsmϵϕ(zt, t,y)
∫ λsm

λt
e−λdλ. Then, we have

ϵϕ(zt, t,y) =
Gm

θ (zt, t,y)− αsm

αt
zt

αsm

∫ λsm

λt
e−λdλ

, (4)

where zt = αtz0 + σtϵ. In this case, y can represent any
prompt embedding, including ∅. According to Eq. (7), LSDS



can be further transformed into:

ϵ̂ϕ(zt, t,y)− ϵ = ϵϕ(zt, t,y)− ϵ−Gm
θ (ẑΦs , s,y)+

Gm
θ (ẑΦs , s,y) + ω(ϵϕ(zt, t,y)− ϵϕ(zt, t, ∅)),

(5)
where ẑΦs = Φ(zt, t, s,y). By substituting Eq. (4) into
Eq. (5), we obtain

LSDS(θ)=Et[b(t)||Gm
θ (ẑΦs , s,y)−Gm

θ (zt, t,y)

+ ω(Gm
θ (zt, t, ∅)−Gm

θ (zt, t,y))−Gm
θ (ẑΦs , s,y)

+
αsm

αt
zt − αsm

∫ λsm

λt

e−λdλϵ||22],
(6)

where b(t) = ω(t)

(αsm

∫ λsm
λt

e−λdλ)2
. Furthermore,

αsm

αt
zt − αsm

∫ λsm

λt

e−λdλϵ

=
αsm

αt
(αtz

c
0 + σtϵ) + αsm(eλsm−λt − 1)ϵ

= αsmz0 + σsmϵ

= zsm

(7)

Substituting Eq. (7) into Eq. (6), we can obtain Eq. (8).
Proof is completed.

E. Computation Reduction Trick
Eq. (7) can be transformed into

ϵ̂ϕ(zt, t,y)−ϵ=ϵϕ(zt, t,y)−ϵ+ω(ϵϕ(zt, t,y)−ϵϕ(zt, t, ∅))
=ϵϕ(zt, t, ∅)−ϵ+(ω + 1)(ϵϕ(zt, t,y)−ϵϕ(zt, t, ∅))

(8)
Based on Eq. (8), we can readily derive Eq. (9) by following
the procedure described in App. D.

F. Proof of Upper Bound of Distillation Error
Before proving Theorem 1, we first give the following
lemma:

Lemma 1. Given a sub-trajectory [sm, sm+1], let ∆t =
maxt,s∈[sm,sm+1){|t − s|}. We assume Gm

θ satisfies the
Lipschitz condition and the ODE solver has local error
uniformally bounded by O(t − s)p+1 with p ≥ 1. If
Gm

θ (z̃Φt , t, ∅) = Gm
θ (ẑΦs , s, ∅) for ∀t, s ∈ [sm, sm+1], we

have

sup
t,s∈[sm,sm+1)

||Gm
θ (z̃Φt , t,y)−Φ(z̃Φt , t, sm,y)||

= O((∆t)p)(sm+1 − sm).
(9)

Proof. The proof is based on [2, 7–9]. Let

en−1 := Gm
θ (z̃Φs , s,y)−Φ(z̃Φs , s, sm,y), (10)

where z̃Φs = Φ(zcsm , sm, s,y). According to the condition,
we have

en = Gm
θ (z̃Φt , t,y)−Φ(z̃Φt , t, sm,y)

= Gm
θ (ẑΦs , s,y)−Gm

θ (z̃Φs , s,y)

+Gm
θ (z̃Φs , s,y)−Φ(z̃Φs , s, sm,y)

= Gm
θ (ẑΦs , s,y)−Gm

θ (z̃Φs , s,y) + en−1,

(11)

Provided that Gm
θ satisfies L-Lipschitz condition, we have

||en|| = ||en−1 +Gm
θ (ẑΦs , s,y)−Gm

θ (z̃Φs , s,y)||
≤ ||en−1||+ ||Gm

θ (ẑΦs , s,y)−Gm
θ (z̃Φs , s,y)||

≤ en−1 + L||ẑΦs − z̃Φs ||
≤ en−1 + L ·O((t− s)p+1)

≤ en−1 + L(t− s) ·O((∆t)p).

(12)

Besides, according to the boundray condition,

esm = Gm
θ (ẑΦsm , sm,y)−Φ(z̃Φsm , sm, sm,y)

= ẑΦsm − z̃Φsm = zcsm − zcsm = 0,
(13)

Therefore,

||en|| ≤ ||esm ||+ L
∑

ti,ti−1∈[sm,sm+1]

(ti − ti−1)O((∆t)p)

= O((∆t)p) · (sm+1 − sm).
(14)

The proof is completed.

According to Eq. (12), one can ideally optimize a 3D
model θ such that zsm = Gm

θ (z̃Φt , t,y). In this case, we
have Φ(z̃Φs , s, sm,y) = zdatasm , where zdatasm = αsmzdata +
σsmϵ∗. Based on this, we have

||Gm
θ (z̃Φt , t,y)−Φ(z̃Φt , t, sm,y)||= ||zsm−zdatasm ||= ||z0−zdata||.

(15)
Since we use a first-order ODE solver to implement Φ, we
have

sup
t,s∈[sm,sm+1)

||z0 − zdata|| = O(∆t)(sm+1 − sm). (16)

The proof is completed.

G. Visual Comparisons of State-of-the-arts

We also present additional visual comparisons with state-
of-the-art methods, as shown in Fig. 2 and Fig. 3. We pro-
vide additional qualitative comparisons against DreamFu-
sion [6], LucidDreamer [3], Consistent3D [9], ConnectCD
[2], Magic3D [4], Fantasia3D [1], and CSD [10]. As shown,
our method clearly outperforms others visually.



DreamFusion
(~1h)

Consistent3D
(~2.4h)

LucidDreamer
(35~45min)

ConnectCD
(1h~1.4h)

SegmentDreamer(ours)
(32~38min)

An amigurumi bulldozer

A DSLR photo of a bear dressed as a lumberjack

A plush toy of a corgi nurse

A robot made out of vegetables

A DSLR photo of a corgi wearing a top hat

A yellow schoolbus

Figure 2. Additional qualitative comparisons with DreamFusion [6], LucidDreamer [3], Consistent3D [9], and ConnectCD [2]. CFG scales
are set to 100, 7.5, 20∼40, 7.5, 7.5, respectively. Our approach yields results with high quality. Please zoom in for details.
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Table 1. 40 prompts for evaluation.

Column 1 Column 2

1. A cat with a mullet 21. A blue motorcycle
2. A pig wearing a backpack 22. Michelangelo style statue of an astronaut
3. A DSLR photo of an origami crane 23. A DSLR photo of a chow chow puppy
4. A photo of a mouse playing the tuba 24. A DSLR photo of cats wearing eyeglasses
5. An orange road bike 25. A red panda
6. A ripe strawberry 26. A DSLR photo of an elephant skull
7. A DSLR photo of the Imperial State Crown of Eng-
land

27. An amigurumi bulldozer

8. A photo of a wizard raccoon casting a spell 28. A typewriter
9. A DSLR photo of a corgi wearing a top hat 29. A red-eyed tree frog, low poly
10. A rabbit, animated movie character, high-detail 3D
model

30. A DSLR photo of a chimpanzee wearing head-
phones

11. A panda rowing a boat 31. A robot made out of vegetables
12. A highly detailed sand castle 32. A DSLR photo of a red rotary telephone
13. A DSLR photo of a chimpanzee dressed like Henry
VIII king of England

33. A DSLR photo of a blue lobster

14. A photo of a skiing penguin wearing a puffy jacket,
highly realistic DSLR photo

34. A DSLR photo of a squirrel flying a biplane

15. A blue poison-dart frog sitting on a water lily 35. A DSLR photo of a baby dragon hatching out of a
stone egg

16. A DSLR photo of a bear dressed in medieval armor 36. A DSLR photo of a bear dancing ballet
17. A DSLR photo of a squirrel dressed like a clown 37. A plate of delicious tacos
18. A plush toy of a corgi nurse 38. A DSLR photo of a car made out of cheese
19. A humanoid robot playing the violin 39. A yellow school bus
20. A DSLR photo of a bear dressed as a lumberjack 40. A DSLR photo of a shiny beetle
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