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This supplementary material contains the following parts:001

• Sec. 1 provides the implementation details of our method.002
• Sec. 2 explains the cross-trajectory term and null-text003

branch.004
• Sec. 3 shows the quantitative evaluation in ablation study.005
• Sec. 4 explains the connection with IP2P.006
• Sec. 5 provides the comparison with PDS.007
• Sec. 6 shows the more comparison in 2D image editing.008
• more 3D scene editing results in video.009

1. Implementation Details010

For 3DGS [5] as a 3D representation, we implemented our011
method using the official codes of GS-Editor [1]. During012
editing, we utilized a maximum of 96 views for different013
scenes and trained the model for 1500 iterations (about 650014
seconds on one RTX3090 GPU for editing 512×512 im-015
age). By default, we set the classifier scale to 7.5 for the016
weight of cross-prompt, 2.0 for cross-trajectory, and 7.5017
for prompt-enhancement. The diffusion model used is SD-018
2.1, along with InstructionP2P, which samples noise from019
t ∈ [0.02, 0.98] and employs the DDIM [9] scheduler with020
1000 steps.021

For NeRF [7] as a 3D representation, we applied our022
method to the official codes of IN2N [2], the scale weights023
and diffusion model settings are the same as described above024
and set the number of iterations to 3K. For PDS [6], we used025
the default settings (30K iterations) from the official codes.026

For image editing, we followed the same settings as027
DDS [3], using the DDIM scheduler with 1000 steps, with028
the same weights as used for 3D editing. The diffusion029
model is set to SD-1.5 by default, for both our method and030
the competitors.031

2. More explanation about cross-trajectory032

2.1. Theoretical explanation033

In the main manuscript, we discussed that the cross-034
trajectory term represents the change in the current latent035
state, which is why we refer to it as cross-trajectory. Below,036

we provide a more detailed theoretical explanation: 037
If the source prompt is set as null-text, Lssd corresponds 038

to the generation process from the source latent: 039

Lssd = s (ϵϕ(zt, y)− ϵϕ(zt,∅))+ (ϵϕ(zt,∅)− ϵϕ(ẑt,∅)),
(1) 040

the second term ϵϕ(zt,∅)− ϵϕ(ẑt,∅) represents the differ- 041
ence between predictions for the new trajectory and the old 042
one under the null-text prompt. Hence, it can be regarded as 043
the direction that transitions an image from the old trajectory 044
to the new one. Notable, DDS yields the same result as Eq. 1 045
when the source prompt is set to null-text. 046

Ldds = s
(
ϵϕ(zt, y)− ϵϕ(ẑt, ŷ)

)
+ (1− s)

(
ϵϕ(zt,∅)− ϵϕ(ẑt,∅)

)
,

(2) 047
However, in editing tasks, given a source prompt, the second 048
term (1−s) (ϵϕ(zt,∅)− ϵϕ(ẑt,∅)) in Eq. 2, when regarded 049
as the cross-trajectory term, has a negative weight (1− s), 050
which continually subtracts from the trajectory and has a 051
detrimental effect on the optimization process. 052

In our design, term ϵϕ(zt, ŷ) − ϵϕ(ẑt,∅) offers an in- 053
terpretable explanation on the cross-trajectory term. Here, 054
ϵϕ(zt, ŷ) is the distance between the current latent zt and 055
the source prompt ŷ, while ϵϕ(ẑt,∅) is the distance between 056
the source latent ẑt and the null-text. The latter is a constant 057
distance derived from the diffusion model, and we subtract 058
it from the former to determine the trajectory direction. 059

2.2. Why introduce the null-text branch and the 060
“clear” gradient of the cross-trajectory term 061

In the main manuscript, we introduce the null-text branch 062
to guide the optimization process. Here, we further explain 063
the null-text and the concept of “clear” gradient. First, we 064
visualize how ϵ affects the image. As discussed in NFSD [4], 065
subtracting the initial noise (−ϵ) yields a clean image. The 066
predicted ϵϕ(ẑt, ŷt) and the residual ϵϕ(ẑt, ŷt)−ϵ are shown 067
in the first two rows of Fig. 1. The residual ϵϕ(ẑt, ŷt) − ϵ 068
generates much better images while preserving the source 069
image structure. We want to emphasize that DDS elimi- 070
nates the initial noise (−ϵ) through the “Delta” operation by 071
subtracting the source branch from the target branch. 072
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Figure 1. Illustration of the gradient of DDS and Our design. The
first two rows show the source branch predicted ϵϕ(ẑt, ŷt) and the
residual ϵϕ(ẑt, ŷt)− ϵ. The middle two rows show the predicted
null-text. The last two rows illustrate the gradients of DDS and our
cross-trajectory term. From left to right, the figures represent the
optimization iteration process.

Secondly, regarding the null-text branch, we found that it073
can also estimate model bias, as shown in Fig. 1. The null-074
text branch produces the same effect as the source branch.075
Ideally, the null-text branch should not include the edit di-076
rection, which not provide any information about the source077
prompt. Thus, we can consider the null-text branch as a078
“clear” gradient.079

Furthermore, we conducted an experiment to demonstrate080
the “clear” gradient. In this experiment, the target prompt081
was set to be the same as the source prompt, and our Lssd082
only included the cross-trajectory term. Ideally, the gradi-083
ent in this setup should not modify the source image. As084
shown in Fig. 1, during the optimization process, the gradi-085
ent of DDS modifies the head (red box) and wing of bird,086
whereas the gradient of our cross-trajectory term does not087
modify the image at all, indicating that the gradient of cross-088
trajectory term is “clear”.089

3. Quantitative Evaluation in Ablation Study090

Due to space limitations in the main manuscript, we pro-091
vide the quantitative evaluation in Tab. 1. Additionally, we092
include the metric for “CLIP Image”, which calculates the093
similarity between the edited image and the source image,094
evaluating the performance in preserving the source image’s095
structure. Notably, the results in Tab. 1 are calculated using096

Table 1. Quantitative evaluation in ablation study.

Method CLIP Sim ↑ Sim Dire ↑ CLIP Image ↑
L ssd 0.1977 0.1169 91.47
L ssd+ L ID 0.1937 0.0970 92.42
L ssd+ L align 0.1954 0.1111 91.75

Full 0.1938 0.1040 92.10

scene cases processed by the SD model, which differs from 097
Table 1 in the main manuscript that uses both the SD model 098
and InstructionP2P. As analyzed in the main manuscript, 099
InstructionP2P does not include the Lalign and LID compo- 100
nents. 101

In the first two rows of Tab. 1, we observe that using LID 102
improves the “CLIP Image” score while correspondingly 103
decreasing the “CLIP Sim” and “Sim Dire” metrics. The LID 104
term strictly preserves the source image, and in some cases, 105
it constrains the editing strength. In our design, the LID term 106
is intended to prevent gradient explosions and ultimately 107
leads to more visually appealing results. 108

The Lalign component effectively enhances style editing 109
for 2D images. For 3D scene editing as shown in the third 110
row of Tab. 1, Lalign improves the “CLIP Image” score while 111
reducing “CLIP Sim” and “Sim Dire.” This is achieved 112
by setting wt = 2.0 in Lssd to maintain cross-trajectory. 113
Simply adding Lalign to the loss function, however, may lead 114
to a decrease in performance. 115

Overall, the full model achieves balanced performance 116
across all three metrics, which is desirable for editing tasks. 117

4. Connection with IP2P 118

We talk about the two terms perspectively in the following. 119
(i) The term ϵϕ(zt, ŷ) − ϵϕ(ẑt,∅) in Eq.6 corresponds 120

to the effect of the initial point (constant term ϵϕ(ẑt,∅)) on 121
the current latent zt, where the source latent ẑt and source 122
prompt ŷ influence the optimization. In IP2P, the source 123
image is embedded into the model architecture, whereas our 124
method provides the source latent and prompt implicitly. 125

(ii) The cross-prompt term ϵϕ(zt, y)− ϵϕ(zt, ŷ) in Eq.6 126
corresponds to the influence of the transition from the source 127
prompt to the target prompt y on the current latent zt. In 128
IP2P, ϵθ(zt; cI ; cT ) − ϵθ(zt; cI ;∅) in Eq.10 describes how 129
the instruction cT affects the latent representation. In a 130
word, SSD provides a constant term in the optimization 131
process, while IP2P embeds the source image into the model. 132
Two terms in SSD are equivalent to the two terms in IP2P, 133
respectively. We have presented the experimental results of 134
reweighting the two terms in IP2P, which produce the same 135
effect as shown in Fig.4. 136

5. Comparison with PDS 137

We provide additional visual results comparing our method 138
with PDS [6], a scene editing approach based on posterior 139
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Figure 2. Qualitative comparison with PDS, our approach (SDS) demonstrates superior performance in pose change, object change, and
style editing tasks, providing more realistic and visually appealing results.

Table 2. Quantitative comparison with PDS.
Method CLIP Sim ↑ Sim Dire ↑
PDS 0.1432 0.018
Ours 0.1503 0.026

sampling. PDS attempts to match the stochastic latent be-140
tween the source and target prompts, however, it suffers141
from slow convergence (30K iterations, about 10 hours) and142
inferior editing quality.143

In Fig. 2, we present a comparison between PDS and144
our method (3K iterations). It is evident that our method145
produces more realistic and visually appealing results in146
pose change, object change, and style editing tasks. The147
performance of PDS is constrained by the stochastic latent,148
showing strengths in pose changes and object additions, but149
falling short in content editing. In contrast, our method150
offers more stable and precise editing results, making it151
better suited for editing tasks.152

In Tab. 2, we provide a quantitative comparison with PDS.153
Our method outperforms PDS in both “CLIP Sim” and “Sim154
Dire” metrics, demonstrating the effectiveness of our design155
in 3D scene editing tasks.156

6. More Comparison in 2D Image Editing157

We provide additional comparisons of 2D image editing158
results. In Fig. 3, we present comparison results for con-159
tent editing tasks, including object change and pose change.160
Our method produces more realistic and visually appeal-161
ing results compared to DDS and CDS, while inversion-162
based editing methods often degrade the source images. In163
Fig. 4, we show the comparison results for style editing tasks.164
Our method achieves superior performance in style editing,165

demonstrating its effectiveness across various editing scenar- 166
ios. 167
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Source DDIM+P2P DDIM+PNP DDIM+Masa DDS CDS Ours

Two origami birds sitting on a branch

A girl sitting at a table with pizza → noodles and drinks

A white and black → colorful and beautiful photo of bride and groom embrace in the woods

Dogs → Rabbits running in the grass

A swan swimming in a pond with its head look out → in the water

Figure 3. Comparison of different editing methods in content editing.
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Source DDIM+P2P DDIM+PNP DDIM+Masa DDS CDS Ours

A clown in pixel art style with colorful hair

A pixel art of christmas living room with fireplace, chair, wreath and tree

Watercolor of a white horse running in the field

Watercolor of a woman in sunglasses and leather pants sitting on a bench

Watercolor of a picnic table with a bottle of wine and fruit on it

Figure 4. Comparison of different editing methods in style editing.
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