Training-free Geometric Image Editing

Supplementary Material

A. Additional Results

We provide additional qualitative comparisons to state-of-
the-art methods in Fig. 8, Fig. 9, and Fig. 10 for 2D editing
tasks, Fig. 11 for 3D editing tasks, and Fig. 12, Fig. 13 for
inpainting tasks.

B. Extended Applications

Beyond the core tasks presented in the main paper, Free-
Fine further supports Partial Mask Editing, Appearance
Transfer, and Cross-Image Composition to address more
complex editing scenarios. Qualitative results for these ex-
tended capabilities are shown in Fig. | and Fig. 2 , collec-
tively demonstrating the versatility of FreeFine. We formal-
ize the key implementation details as follows:

Appearance Transfer aims to preserve the shape of the
source object while replacing its textural or color proper-
ties with those of a target object. This is achieved using our
TCA module: specifically, by substituting the source image
I, and source mask M, with the target appearance image
and its corresponding object mask, while retaining M; (the
mask of the object to be edited). Additionally, we employ
the LP module on M, to facilitate appearance modification,
and can optionally specify the new object category via our
CG module to further enhance details.

Cross-Image Composition is a generalized geometric edit-
ing task that involves rearranging multiple objects within
a shared canvas. This is implemented through our editing
pipeline in three key steps: (1) Removing original objects
from the source image to produce a clean canvas—this step
is optional and only performed when existing objects need
to be relocated or replaced; (2) Copying target objects into
the canvas and adjusting their geometric properties (e.g.,
repositioning, reorienting, rescaling) to generate a coarse
composite image I.; 3) Refining the target regions using
the same refinement process described in the main paper.

For composing N objects, the required input parameters
are formalized as a set P:

P ={(Lei, My, My 35 L, Mj,;) | Vie{1,2,..,N}}

where I, ;, M, ;, and M, ; are mandatory parameters: [ ;
denotes the source image of the i-th object, M, ; its source
mask, and M, ; its target mask in the canvas; superscript *
indicates optional parameters: L] corresponds to the cate-
gory label for the CG module, and My ; denotes the draw
mask of the i-th object for structure completion.
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Figure 1. Qualitative result on Partial Mask editing tasks. Instead
of editing a whole object, this task focuses on editing parts of an
object.

C. Additional Ablation Studies

We further compare TCA with the timestep thresholding al-
ternative mentioned in the main paper, which is equivalent
to early stopping using MMSA after reaching a timestep
threshold. As shown in Fig. 3, the early-stop strategy faces a
trade-off: stopping too early introduces undesired changes,
while stopping too late degrades structural completion. In
contrast, TCA avoids this trade-off by smoothly transition-
ing between MMSA and self-attention, achieving both bet-
ter completion and preservation of details.

D. Additional Implementation Details
D.1. Step 1: Object Transformation Details

As described in the main paper, Step 1 of our pipeline in-
volves transforming the object in the source image [ based
on user instructions. Here, we provide additional details,
organized from simple 2D edits to complex 3D transforma-
tions.

2D Transformations. For purely 2D edits, Ty represents an
affine transformation, which can be expressed as a unified
transformation matrix:

!

T Sz COSQ —Sy-sing 1, T
Y| =|sz-sing s,-cosd t, yl,
1 0 0 1 1

where (z, y) are pixel coordinates in My, and (2, y’) are the
transformed coordinates. Here, s, and s, represent scaling
factors along the = and y axes, ¢ is the rotation angle, and
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Figure 3. Comparisons between the proposed TCA and the
straightforward early stop strategy with MMSA. Experiments are
conducted while keeping LP and CG applied at the same scale.

(tz,ty) is the translation vector. This matrix supports com-
bined operations such as scaling, rotation, and translation in

Cross Image Composition

Source Target Prompt Result

a single transformation.

3D Transformations. For 3D edits, we explore two ap-
proaches: (1) depth estimation from a single image to estab-
lish a sparse 3D representation, lift the object to 3D space,
apply transformations, and re-project it back to 2D; and (2)
leveraging video models, particularly multi-view video gen-
eration from a single image [32]. Note that existing multi-
view generation methods typically require clean foreground
images with white backgrounds, and the transformed ob-
jects often suffer from detail loss and structural artifacts(e.g.
incomplete or missing parts). These limitations highlight
the importance of our Step 3 (target region refinement) for
achieving high-quality results.

In the first approach, we estimate the scene depth using
a depth estimator [34]. Given the depth map D of I, we
lift the object in M, to 3D space using the camera intrinsic
matrix K:

Ps = K_l . (.’L‘,y, 1)T . Ds(m7y)7

where P; represents the 3D coordinates of the object. We



then apply the transformation 7y in 3D space. For example,
a rotation along the y-axis by ¢ degrees is represented as:

Pt = Ry(¢) . Psw

where R, (¢) is the rotation matrix. Finally, we re-project
the 3D points back to 2D image space:

(2',y) =K P,

However, this method has several limitations: (1) the cam-
era intrinsic matrix K is unknown and must be estimated
or assumed, (2) the depth map from [34] provides only rel-
ative depth, and (3) the sparse 3D representation leads to
artifacts during reprojection, requiring additional rasteriza-
tion and refinement steps. Due to these limitations and its
reliance on strong assumptions, this approach struggles to
handle large-angle 3D transformations effectively.

To address the challenge of large-angle 3D transforma-
tions, we utilize video models such as [32] to generate a
multi-view video of the target object. Following the ap-
proach of [32], we specify the elevation angle and generate
an n-frame multi-view video by controlling the azimuth an-
gles. By indexing the frames, we extract the corresponding
transformed images, which are rendered on a white back-
ground. We then align the center of the transformed ob-
ject with the source mask and composite it back into the
original image. The key parameters include the azimuth
angles (e.g., [0°,30°,...,330°]) and elevation angles (e.g.,
[—10°,0°,10°]), which allow us to control the viewpoint
and generate diverse transformations

Notably, both 3D rotation via video models (e.g., SV3D)
and that via depth estimation (e.g., DepthAnything) suffer
from imprecise angle control. In the main paper, we fo-
cus on fair quantitative comparisons under the same depth-
based setup. As shown in Fig. 11, even with identical input
angles, results from our SV3D-based approach and depth-
based approach show deviations, yet the former yields more
realistic editing outcomes.

Flexible Combination. Our pipeline supports arbitrary
combinations of 2D and 3D transformations, allowing users
to achieve both precise control and realistic results. For ex-
ample, a 2D translation can be combined with a 3D rotation
to create complex editing effects.

D.2. Local Perturbation

As described in the main paper, Local Perturbation (LP) in-
troduces controlled stochasticity within a user-defined mask
M to enable dramatic changes in editing scenarios. Here,
we provide additional implementation details.

The original sampling process can be formulated as:

G — Tt — Vl_at'ee('rht) (1)
0 — \/OTt )

Ty = /a1 - To+ /1 — a1 — 0} - eg(xy,t) + 0y - €,

2

where ¢ is the timestep, x; is the latent variable, ep(x¢, ) is
the model-predicted noise, o is a noise scheduling param-
eter, e ~ N (0, 1) is standard Gaussian noise, and o; is set
to 0 for deterministic control.

Our key insight is to introduce additional stochasticity
into local completion regions while maintaining determin-
istic behavior elsewhere. Specifically, we set:

. \/11“;”1-(1—(31), if M )

0, otherwise.

This allows LP to selectively apply DDPM updates [7]
within the mask and DDIM updates [25] elsewhere, balanc-
ing flexibility and control.

LP is versatile and can be applied to various tasks with
different purposes. In Step 2 (source region inpainting), LP
is applied to the source mask M to remove unwanted ob-
jects while preserving the background. In Step 3 (target
region refinement), LP is applied to the target mask My to
refine and complete structures. For general refinement tasks
without structural completion demands (e.g., easy 2D trans-
formations), we focus on the boundary between the object
and the background to mitigate unnatural blending. Specif-
ically, we define the boundary mask using morphological
dilation [1]:

M, = Dilation(M,) — M,

and set M = M, to guide the refinement process.

Since our framework’s components can be seamlessly re-
placed by other tools, when undesired content is generated
in the source region, we can further refine it in Step 3 by
simply including the problematic region in M during LP.

E. Evaluation and Baselines

This section provides additional details on the evaluation
metrics and the implementation of baseline methods used
in our experiments.

E.1. Metrics

Details of how to calculate the metrics: (1) FID [6]. The
implementation of pytorch-fid [23] is used, specifically by
extracting feature vectors from Inception-v3 [28] and com-
puting the Fréchet distance (FID) between the distributions



of the edited results and 2,000 randomly selected source im-
ages. Furthermore, we replace the Inception features with
DINO features (DINO) and use kernel distance (KD) in-
stead of the Fréchet distance to mitigate the bias inherent in
the original FID, enabling a more comprehensive evaluation
of image quality. (2) Subject Consistency (SC). It measures
the consistency of the foreground subject between source
image I and cgenetated image I;. Given the source mask
My and the target mask M, SC value is calculated as:

Vsc = cos (Foiolls - M|, Fpomoll: - M),

where cos (-) indicates the cosine distance and Fpo rep-
resents the DINO [2] feature of a image. (3) Background
Consistency (BC). It measures the consistency of the back-
ground and is calculated similarly to SC value but with the
CLIP [19] feature Fcyp:

Vec = cos (Feup[Is - Mygl, Feup[I; - M)

where My, =1 — (Mg U M) represents the mask of back-
ground. The settings of using different features are from
VBench [8]. (4) Warp Error (WE). We follow the imple-
mentation described in GeoDiffuser [22] to get the warped
image I, and compute the L1 error L4 (+):

Vwwe = Ly (I - My, L, - My) .

(5) Mean Distance (MD). We first find interest points P; on
the source image using SiFT [15], which are transformed
with the transform F to obtain target positions P, and used
to locate the corresponding points P, in the edited image via
DiFT [30]. The mean distance between P; and P, reflects
the accuracy of the edit.

E.2. DragonDiffusion [17]

DragonDiffusion supports object moving and resizing in
its original implementation. The source mask A, in our
method is one of the inputs of DragonDiffusion to locate
the original content position. Instead of the original way
of representing edits with drag points, we directly translate
the edit parameters into model inputs. By specifying the
target mask M, in our method as its target dragging posi-
tion, we apply DragonDiffusion to the rotating task. As for
3D-edits, We implement it by setting the drag points in the
content dragging demo. All other hyper parameters and op-
tional inputs remain unchanged by default.

E.3. MotionGuidance [5]

The core input to MotionGuidance is the optical flow that
represents the edit task. For 2D-edits, we can simply get
the optical flow by geometric calculation with the source
mask M for the object and the editing parameters. For 3D-
edits, We use SV3D [32] to warp the source image and use
RAFT [31] to estimate the optical flow between the warped

image and the original. Once getting the source image and
the target optical flow, we can implement MotionGuidance
in different editing tasks. Notably, MotionGuidance has 500
denoising steps in the default settings and takes an average
of 40 minutes per image. Considering the fairness and the
cost of the comparison experiment, we set the same 50 steps
as the others and use the editing results for the perceptual
study. As for qualitative comparisons, the default settings
are used.

E.4. RegionDrag [16]

RegionDrag requires the indication of source and target re-
gions to perform editing tasks. This method supports 2D
moving, scaling, and rotation; however, the 3D editability
of RegionDrag is inherently limited due to the input form
and optimization strategy. We use the official implementa-
tion released by the authors and pass in the source mask M
and target mask M, in GeoBench to indicate the source and
target edit regions respectively. We use default values for
other hyperparameters and optional inputs.

E.S. Self-Guidance [4]

Self-Guidance does not explicitly take in point-based or
region-based input. Instead, this method needs textual in-
put to indicate the subject that requires editing. We discover
that the official demo code from the authors does not sup-
port real image editing; therefore, we follow the implemen-
tation described in GeoDiffuser [22] and use the code base
from [35]. We first use DDIM Inversion on real images
to obtain the starting noise latent. To indicate the desired
2D and 3D transformations, we use the geometric editing
instructions from our dataset. Finally, we use Eq. 9 in Self-
Guidance [4] to optimize both the object shape and appear-
ance.

E.6. DragDiffusion [24]

DragDiffusion relies on the user input drag points for ge-
ometric image editing. This method gradually drags the
source points to the target location by running an iterative
optimization process on the image latent in a specific inter-
mediate time step. We directly leverage the original imple-
mentation of DragDiffusion by feeding in the source mask
M and editing parameters to automatically obtain the con-
trol points.

E.7. GeoDiffuser [22]

GeoDiffuser achieves both 2D and 3D edits by using shared
reference and edit attention layers. The attention sharing
mechanism will take in geometric transformations and cre-
ate corresponding losses for image latent optimization. We
directly use the original GeoDiffuser implementation for
evaluation. We convert transformation parameters from
GeoBench into transformation matrix to serve as the model



input. In 2D scenarios, we always use a constant depth map
for the whole image following GeoDiffuser, while for 3D,
we estimate the image depth using Depth Anything. [34]

E.8. Diffusion Handles [18]

Diffusion Handles performs geometric edits by leverag-
ing depth maps and camera transformations. Its workflow
flow proceeds as follows: first, it conducts null-text in-
version using the depth-to-image Stable Diffusion model,
then inpaints the foreground region of the target object with
LaMa [27]. The inpainted image is subsequently used to es-
timate the scene’s background depth, which is blended with
the transformed foreground object. Finally, the edited im-
age is generated using the transformed depth map combined
with the transformed activations of the depth-to-image SD
model, as detailed in [18]. Our implementation is built on
the codebase of GeoDiffuser [22], which adopts the official
implementation provided by the authors of Diffusion Han-
dles [18]. For parameter compatibility, we adapt our editing
parameters to fit the model’s input format and use a constant
depth setting for 2D editing.

E.9. DesignEdit [9]

DesignEdit treats geometric image editing as two sub-tasks:
multi-layered image decomposition and multi-layered im-
age fusion. This method segments out the foreground object
and background in the latent space, then applies instruction
guided latent fusion that pastes the multi-layered latent rep-
resentations onto a canvas latent. We use the official im-
plementation [9] released by the authors and additionally
implement rotation editing on top of it.

E.10. Inpainting Methods

We conduct experiments using MAT [14], LaMa [27],
BrushNet [10], and Stable Diffusion Inpainting [26]. As
mask dilation is a common technique for object removal,
we set a dilation factor of 30 on the source mask M, for
Step 2 across all methods, including ours, to minimize ob-
ject remnants caused by imperfect masks. Additionally, we
use the conditional prompt “empty scene” for guidance and
fix the random seed in all comparative and ablation experi-
ments to ensure fair and reproducible results.

For the structure completion task, we use manually
drawn masks to guide region completion and employ
object-specific text prompts from our GeoBench dataset.
For general refinement tasks without structure completion,
we use boundary masks, as described in the Local Perturba-
tion (LP) section, to guide the refinement process.

F. Details of GeoBench

In the main paper, we introduced GeoBench, a benchmark
for evaluating geometric editing methods. This section de-
tails its data generation pipeline, including mask generation,

label extraction, editing instruction creation, and manual su-
pervision, along with dataset statistics.

Mask Generation. Accurate object masks are essential
for distinguishing foreground from background and en-
abling precise region editing. We use the segmentation tool
SAM [12] to automatically segment datasets sourced from
PIE-Bench [11] and Subjects200K [29], which consist of
real and synthetic images featuring prominent objects suit-
able for geometric editing. However, SAM faces challenges
in segmentation granularity (e.g., instance, panoptic, part-
level) and may not align with our editing requirements. To
overcome this, we use SemanticSAM [13], which allows
manual adjustment of segmentation granularity, ensuring
more precise and relevant masks. Post-processing first ap-
plies algorithm-based filtering: tiny masks are discarded,
and images with excessive masks (over 50 per image, in-
dicating crowded scenes with limited space for geometric
edits) are excluded, where the former is defined as:

M

X w

< 0.001

tiny mask <=

where M denotes the object mask, h is the image height,
and w is the image width. Remaining masks then un-
dergo manual selection to retain the most prominent (e.g.,
texture-clear, non-blurry) and editable foreground objects
(non-overlapping with other objects, not truncated by im-
age boundaries).

Label Generation. We use ShareGPT4V [3] to generate de-
tailed image descriptions and an algorithm based on CLIP
similarity [19, 33] to extract object labels. By comparing
the CLIP similarities before and after background inpaint-
ing, we select the top k most related labels and send them
to human filtering for final verification. Here, we set k = 5
as the most appropriate label consistently appears in the top
5. An alternative approach, GroundingSAM [20], offers si-
multaneous mask and label generation but shares the same
limitations regarding segmentation granularity and error ac-
cumulation, often resulting in irrelevant or overly coarse
masks.

Editing Instruction Generation. To enable diverse and
multi-level edits, we design a range of editing prompts and
randomly generate instructions for each image, categorized
into three difficulty levels: easy, medium, and hard, as de-
tailed in Tab. 1. Instructions include transformations such
as moving (eight directions: up, down, left, right, and diag-
onals), resizing (zooming in/out), and rotating (clockwise,
counterclockwise, and 3D rotations). For 3D rotation in-
structions, we validate direct depth estimation-based trans-
formations and exclude samples with unreliable depth es-
timates. We also exclude instructions that result in objects
extending beyond the image boundaries. Additionally, we
manually identify cases requiring structural completion and



Table 1. Parameter ranges for editing operations across three dif-
ficulty levels.

Move

. 2D Rotate Resize Resize 3D Rotate
Difficulty o (Frac. of . o
(°) Img Size) (Enlarge)  (Shrink) ©)
Easy 5-10 0.05-0.1 1.1-1.3 0.8-0.9 5-10
Medium 10-20 0.1-0.2 1.3-1.5 0.6-0.8 15-20
Hard 20-40 0.2-0.4 1.5-3.0 0.4-0.6 25-40

create a dedicated subset for these tasks, along with manu-
ally drawn completion masks for each image.

Dataset Statistics. GeoBench comprises 811 source images
and 5,988 editing instructions, including 2,267 easy, 2,075
medium, and 1,646 hard edits. The dataset is further di-
vided into three subsets: (1) general 2D edits (5,677 in-
structions), (2) 3D edits (190 instructions), and (3) a man-
ually annotated subset for structural completion tasks (121
instructions).

G. User Study Details

A website was built for the user study and we recruited 35
participants with diverse backgrounds in computer vision to
vote online. The home page (Fig. 4 (a)) explains the voting
task and provides guidelines for participants. The survey
includes 6 sections (Move, Rotate, Resize, 3D-Edits, Re-
gion Refinement, Region Inpainting), with 5 samples per
section, totaling 30 evaluations and the first three sections
are all 2D-edits. The Start button redirects users to the vote
page (Fig. 4 (b)), which presents a random editing sample,
including the original image, the visualisation of editing
prompt, anonymous editing results of our method and com-
parative models in a random order and the textual informa-
tion about the sample. Figure shows visualization results of
specific tasks (Move, Rotate, Resize) in 2D-edits.

We compared (1) editing models (DragonDiffusion [17],
RegionDrag [16], Self-Guidance [4], MotionGuidance [5])
in 2D-edits and 3D-edits, (2) inpainting models (Brush-
Net [10], SD-inpainting-v1.5 [21], LaMa [27], MAT [14])
in the region inpainting task, (3) BrushNet [10], SD-
inpainting-v1.5 [21] and editing models in the Region Re-
finement task. 35 participants picked the best image from
three criteria and submitted it, generating 2,622 valid votes
(Tab. 3). In the final section, participants selected one best
image (instead of three criteria) in the region inpainting
task, with the voting number as one-third of the other sec-
tions. Fig. 5 shows voting statistics in the 2D-edits and 3-
edits from different criteria, only the editing models are
counted.

We also validate the alignment between the metrics used
in the main paper and user preferences across three key di-
mensions: Image Quality, Consistency, and Editing Effec-
tiveness, as seen in the Fig. 6 with data from Tab. 2. The

Welcome to the Survey

Here are some notes for you to read carefully before you start

The research was divided into 6 sections for different editing tasks, with 5 samples in

. totalling 30 samples to be evaluated

s between the generated image and the original image.

Ifthe images difficultto judge or ples, clck to enlarge or refresh to get new samples.

Start

2025 1CCV User Study

(a) Home page

Please pick the best images from three criteria
Progress: 1/30

Edit task: move

Text instruction: Move the tulips leftward markedly

Edit param: [x, y] = [-98.0, 0.0]

(b) Vote page

Figure 4. Screen shots of the website for user study.

Table 2. Voting statistics in the 2D-edits and 3-edits from different
criteria, only the editing models are counted.

Image . Editing
Method Quality Consistency Effectiveness Total
Ours 475 473 543 1491
DragonDiffusion [17] 139 149 87 375
RegionDrag [16] 31 40 29 100
Self-Guidance [4] 23 6 9 38
MotionGuidance [5] 0 0 0 0
Total 668 668 668 2004

seven metrics generally correlate strongly with human pref-
erence. However, the WE metric under Editing Effective-
ness shows some degree of misalignment, as evidenced by
the human preference ratings for RegionDrag and Dragon-
Diffusion. Developing more robust quantitative metrics to
better measure editing effectiveness remains an important
direction for future work.

H. Failure Cases and Limitations

While our method achieves strong performance across a va-
riety of geometric editing tasks, it still faces certain failure
cases and limitations, which are detailed below.



Ours | DragonDiffusion ~ RegionDrag | Self-Guidance

Move  61.7% 28.7%
Resize  77.1% 15.1%
Rotate  74.2% 22.2%
Total  70.2% 22.7%

Figure 5. Visualization results of perceptual study in 2D-edits
(Move, Rotate, Resize).

Table 3. Voting statistics in different editing tasks. The blank cells
indicate that the model was not compared in the task.

2D-Edits Region Region

Method 3D-Edits N o Total
Refinement  Inpainting
Move Resize Rotate Total

Ours 374 347 365 1086 405 258 37 1786
DragonDiffusion[17] 174 68 109 351 24 50 425
RegionDrag[16] 42 30 12 84 16 12 112
Self-Guidance[4] 16 5 6 27 11 3 41
MotionGuidance[5] 0 0 0 0 0 0 0
BrushNet[10] 89 22 111
SD-inpaint-v1.5[21] 56 21 77
LaMa[27] 52 52
MAT[14] 18 18
Total 606 450 492 1548 456 468 150 2622

H.1. Failure Cases

Failure cases are illustrated in Fig. 7: (1) Unintended color
changes may occasionally occur in the background dur-
ing editing. This likely stems from the need for early de-
noising steps in Step 2 (implemented to avoid interference
from the source region’s context), which can cause infor-
mation loss and hinder color consistency. (2) Fine details
such as tiny text or guitar strings may appear blurry, as pre-
serving high-frequency features remains a technical chal-
lenge. (3) Despite supporting larger 3D rotations via SV3D,
our method still struggles with large-angle 3D rotations for
many objects. This is due to suboptimal coarse edits from
lifting models, creating significant barriers to effective re-
finement. We hope, however, that FreeFine’s inherent flexi-
bility will help mitigate these issues through the integration
of stronger foundation models in future work. Addressing
these failure cases is a key direction for our future work.

H.2. Limitations

While our method shows strong performance, it still has
several limitations. First, it relies on user input in two as-
pects: (1) it requires user-provided masks for editing guid-
ance, and (2) structure completion tasks depend on manual
intervention to guide the process. Developing automated
pipelines for these steps would reduce manual effort. Sec-
ond, for complex 3D edits, our method depends on depth
estimates or other 3D models. Removing this requirement,
if possible, would make the system more broadly applica-
ble. Third, similar to most diffusion-based methods, our ap-
proach has relatively high computational costs compared to
feed-forward models like GANs. Adopting more efficient

sampling strategies could lower inference costs.
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Figure 6.

(a) Image Quality

(b) Consistency

(c) Editing Effeteness

Assessment of the Alignment between Metrics from the Main Paper and User Preferences across Three Dimensions.

rotate

(a) Unintended Color Change

(a) Loss of High-Frequency Details

Figure 7. Visualization of failure cases.

(C) Large Angle 3D Rotation Problem
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Figure 8. Qualitative comparison with state-of-the-art editing methods in moving operations.
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Figure 10. Qualitative comparison with state-of-the-art editing methods in rotation operation.
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Figure 11. Qualitative comparison with state-of-the-art inpainting methods in 3D-editing scenarios. Two variants of our method are
distinguished by suffixes, indicating the different underlying lifting models.
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Figure 12. Qualitative comparison with state-of-the-art inpainting methods in source region inpainting.



Target Region Refinement

Coarse result Mask Ours SD-inpaint-v1.5 BrushNet

Figure 13. Qualitative comparison with state-of-the-art inpainting methods in target region refinement.
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