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Detection

Supplementary Material

In this supplementary file, we introduce the details of the
datasets and evaluation metrics in Sec. A, and the imple-
mentation in Sec. B. We also provide experimental results
on the dataset VEDAI and KAIST in Sec. C. Additionally,
we provide more visualization results and ablation studies
in Sec. D and Sec. E, respectively.

A. Datasets and Evaluation Metrics

Experimental Datasets. We evaluate our methods on four
common-used visible-infrared object detection benchmark
datasets : M3FD Dataset [13], DroneVehicle Dataset [20],
LLVIP Dataset [9], FLIR Dataset [6] and two additional
datasets: VEDAI Dataset [17] and KAIST Dataset [8].

MP3FD dataset is a benchmark dataset for multi-class
RGB-IR detection which collects 4, 200 pairs of aligned im-
ages from various scenes. These pictures captured under
low-light conditions or in adverse weather, pose a signifi-
cant challenge to the detection performance of the model.
This dataset encompasses six categories of objects that fre-
quently appear in autonomous driving or road surveillance
scenarios. Since it does not provide an official criterion for
dividing the training set and validation set, we adopt the di-
vision standard from [11] as 3,360 pairs for training and
840 pairs for testing.

DroneVehicle dataset is a large-scale RGB-IR vehicle
detection dataset, consisting of 28, 439 pairs of images and
953,087 annotations for five categories: car, truck, bus,
van, and freight-car. The images are collected by drones
under varying lighting conditions, angles, and altitudes.
The rich perspective variations combined with a large num-
ber of dense annotations make it difficult for models to
achieve high detection performance on this dataset. Fol-
lowing the official method for dataset partitioning, we use
17,990 image pairs for training, 1,469 pairs for validation,
and 8, 980 pairs for testing. We report the testing part’s re-
sults.

LLVIP dataset is an aligned low-light RGB-IR dataset
which is specially collected for pedestrian detection with
15,488 image pairs. According to the official standard, we
use 12, 025 image pairs for training and 3, 463 pairs for test-
ing.

FLIR dataset is a relatively difficult RGB-IR detection
dataset with five categories: people, car, bike, dog and other
cars. Due to the low-quality annotations and a large number
of unaligned image pairs in the original dataset, following
by [27], we adopt the FLIR-Aligned dataset which includes
4,129 pairs of images for training and 1, 013 pairs for test-

ing. We remove the ‘dog’ category from the dataset due to
its few number of instances.

VEDALI dataset is a remote sensing detection dataset con-
sisting of 1,210 pairs of RGB-IR images captured from
a drone at high altitudes with nine different types of ob-
jects such as car, truck and pickup. Since the objects are
predominantly small targets, it presents a significant chal-
lenge to the detection performance of the model. Since the
dataset does not have an official split, we follow the com-
mon training and testing set partitioning methodology with
1, 089 pairs for training and 121 pairs for testing.

KAIST dataset is a public low-light multi-spectral pedes-

trian detection dataset. Due to problems in the original
dataset annotations, we utilize the improved training [30]
and testing annotations [12] that are widely adopted by re-
searchers. Following the most commonly used data parti-
tioning method provided by [30], we use 8, 963 image pairs
for training and 2, 252 pairs for testing.
Evaluation metrics. Since our task is object detection, we
choose the most widely used metrics mAPsq and mAP to
evaluate the performance of models on six datasets. The
mAPsy metric represents the mean AP under IoU 0.50 and
the m AP metric represents the mean AP under IoU ranges
from 0.50 to 0.95 with a stride of 0.05 [32]. For the multi-
class datasets M3FD and DroneVehicle, we also provide
the APsq results for each category. Due to the high dif-
ficulty of FLIR-Aligned, we additionally report the results
of precision, recall, and F1 score. All the evaluation metrics
indicate better model detection performance when their val-
ues are higher. We also present the average inference time
of our method, evaluated on an A800 GPU over 15 runs us-
ing input image pairs of size 640 x 640. Additionally, we
provide the parameter specifications of our model.

B. Implementation Details

All experiments on our six datasets are conducted on a sin-
gle A800 GPU, with a batch size of 16 during training and
32 during testing. The input image pairs’ size for both test-
ing and training are 640 x 640 and the training epoch is
set to 250 for all four datasets with an initial learning rate
of 0.01. We utilize the SGD optimizer with a momentum
of 0.937 and a weight decay of 0.0005. The loss function,
other hyper-parameters, and data augmentation parameters
all adopt the default settings of the original YOLOVS [23].



Methods Backbone mAPsy mAP Parameters Inference time (ms)

Ours ResNet50 87.9 59.4 193.2M 53.2
(TNNLS’23) LRAF-Net [7] YOLOv5 85.9 59.1 - -
(PR’24) ICAFusion [19] YOLOvV5 84.8 56.6 164.3M 50.2

(GRSL’24) SSE+FFT [26] YOLOv5 86.5 56.9 -
80.2M -

(ACCV’24) ESM-YOLO [31] YOLOV5 82.4 -

(JSTAEORS’25) DCCCNet [22]  YOLOvVS 82.0 49.9 - -

(GRSL24) CrossYOLO [15] YOLOv7 79.8 - - -
Ours YOLOv5 88.2 59.6 45.6M 44.1
YOLOVSI-IR YOLOv8 73.6 52.2 43. M 22.0
YOLOV8I-RGB YOLOvV8 62.9 46.5 43.7TM 22.0

(JSTAEORS’25) MDA [33] DETR 82.2 - 72.4M -

(ASC’24) DSM-AVD [29] YOLOvV8 79.3 50.3 - -
Ours YOLOvV8 88.4 59.8 69.1M 40.0

Table A. Comparison results with SOTA methods on VEDAI dataset. The best, second and third results are highlighted in red, green and
blue, respectively.
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Figure A. The illustration shows how the original features are filtered in two directions (horizontal and vertical) using DWT, resulting in
four sub-bands: LL (low-low), LH (low-high), HL (high-low), and HH (high-high). ”Fusion” refers to the results obtained after combining
these sub-bands through our method.

Methods Backbone | mAPsg mAP

(CVPRW’19) MMTOD [4] ResNet50 70.7 31.3
(WACV’21) GAFF [28] ResNet50 67.1 24.4
(TCSVT’22) CMDet [20] ResNet50 68.4 28.3
Ours ResNet50 75.0 34.2 CSAA ICAFusion

(2021) CFT [16] YOLOvV5 71.2 29.3 (a) LLVIP
(RS’22) RISNet [24] YOLOV5 72.7 33.1 &%

(PR’24) ICAFusion [19] YOLOV5 60.3 -

(CVPRW’24) DaFF [1] YOLOV5 61.9 -

Ours YOLOv5 75.4 34.4
YOLOVSI-IR [23] YOLOv8 | 568 224 CrossFormer  ESSFN WaveMamb
YOLOVEL-RGB [23] YOLOVS 553 21.6 RGB Input rossFormer aveMamba

(b) FLIR-Aligned

(Sensors’23) Dual-YOLO [2] YOLOv7 73.2 -

(Sensors’24) IV-YOLO [21] ~ YOLOV8 754 - Figure B. Heatmap visualization of several cross-modality object
Ours YOLOV8 | 758 3438 detection methods on LLVIP and FLIR-Aligned.

Table B. Comparison results with SOTA methods on KAIST

dataset. The best results are highlighted in red. The second and .
third best results are highlighted in green and blue, respectively. C. More experiments on VEDAI and KAIST

VEIDA Dataset. The results on VEDAI are summarized on
Table A. Our method achieves top-three rankings on both
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Figure C. Detection results’ visualization of several cross-modality object detection methods on LLVIP and FLIR-Aligned. Wherein, (a)-
(d) present the results of LLVIP dataset, and (e)-(h) present the results of FLIR-Aligned dataset. The targets encircled by red ellipses are
false positives, while those encircled by green ellipses are missed detections. Please zoom in for more details.

Methods mAPsg mAP Parameters
{P1,Py,P3} 9.1 628  23.IM
{P2,P3,P,} 91.8 63.5 58.3M
{P3,Py,P5} 91.5 62.9 84.6M
{P2,Py,P5} 91.3 62.5 78.3M

{P,P5,P5} (ours) 92.1 64.4 69.1M

Table C. Effects of positions of WaveMamba Fusion Blocks on
MP3FD dataset.

Methods mAPs; mAP  Parameters
(One Blocks) 91.3 63.8 59.3M
(Two Blocks) 91.6 64.0 61.6M
(Three Blocks) (ours) 92.1 64.4 69.1M

Table D. Effects of different number of WaveMamba Fusion
Blocks on M3FD dataset.

mAPsy and mAP, surpassing the fourth-place method by
1.9% and 0.7% and achieving 88.4% and 59.8%, respec-
tively. Moreover, our method, based on the YOLOvS and
YOLOvVS backbones, has the smallest number of parame-
ters, requiring only 44.1 ms and 40.0 ms to process a pair
of images, respectively.

KAIST Dataset. Table B shows the results of our method

Methods mAPsg mAP Parameters
(MEYR) 91.7 640 69.1M
(SYM3) 91.8 64.1 69.1M
(COIF3) 91.7 64.1 69.1M
(DB3) 91.8 64.2 69.1M
(HAAR) (ours)  92.1  64.4 69.1M

Table E. Effects of different wavelet bases in WaveMamba Fusion
Blocks on M3FD dataset.

with other SOTA methods on KAIST. Our method achieves
the top three results using three different backbones on both
mAPso and mAP, surpassing the fourth method by 0.4%
and 1.7%, respectively. Notably, although the feature ex-
traction capability of the YOLOVS backbone is inferior to
that of YOLOvV7, our method using YOLOVS still outper-
forms Dual-YOLO, which utilize YOLOv7. The results
demonstrate the superior performance of our WMFBs.

D. Visualization

D.1. Frequency-domain graph

We visualize the wavelet transform outputs of RGB and IR
features derived from the second stage of YOLOvS8 back-
bones trained on each respective modality from a pair of



RGB and IR images, as well as the high- and low-frequency
components after fusion. As shown in Fig. A, the low-
frequency components of IR more effectively convey shape
information compared to RGB, while the high-frequency
components of RGB more distinctly emphasize local ob-
ject contours and details than IR. After fusion, the low-
frequency components of both RGB and IR become clearer,
and the local object features in the high-frequency compo-
nents after fusion are significantly enhanced.

D.2. Heatmaps

Based on Grad-CAM [18], we visualize the heatmaps of
our model’s first inverse wavelet transform layer (for the
enhanced high- and low-frequency features obtained at the
third fusion block) and compare them with other state-
of-the-art methods [3, 10, 19, 25] on LLVIP and FLIR-
Aligned. As shown in Fig. B, our model focuses more in-
tently on detecting targets without being excessively dis-
tracted by background noise by utilizing wavelet transform
and feature fusion to prioritize the targets. In contrast,
other methods either exhibit excessive attention dispersion
in background areas or cover the detection targets with a
wide range of attention, which easily leads to missed detec-
tions of targets within the region.

D.3. Detection Results

We visualize the detection results and compare them with
several SOTA methods [3, 10, 19, 25]. As presented in
Fig. C, under low-light or heavily occluded conditions, our
method has reduced the number of missed and false de-
tected targets compared to other methods. It successfully
detects more difficult targets and achieves the best detection
performance.

E. Ablation Study
E.1. Details of the Improved Head

To demonstrate the effectiveness of our improved YOLOvS8
head, we also combine our fusion modules with the origi-
nal YOLOVS8 head for comparison. To seamlessly integrate
our method into the original YOLOvS8 head, we sum the
fused low-frequency components obtained after each fusion
layer, concatenate them with the fused high-frequency com-
ponents for inverse wavelet transformation, and then feed
the result into the original YOLOvVS head.

E.2. More Ablation Experiments

Effects of WMFBs’ positions. Like previous works [5, 10],
we also employ three feature fusion blocks. Table C shows
the effect of different position combinations of WMFBs on
performance. P; represents that the WMFB is placed at i
stage. Based on the experimental results from “{ P;, Ps,
P5}” and [14], the first layer features are not suitable for

fusion. Without P, there are four remaining possible com-
binations of layers. When comparing “{ P, P53, P5}” with
others, the importance of using features from the second,
third, and fifth layers is verified by the significant accuracy
boost.

Effects of the number of WMFBs. Since YOLOvVS8 head
inherently contains three detection modules, we conduct an
ablation study on the effects of the number of WMFBS by
changing one or two WMFBs to simple AVG method and
the results are shown in Table D. Reducing the number of
WMFBs from three to one and two results in a decrease of
0.8% and 0.5% in m A Pso and a decrease of 0.6% and 0.4%
in mAP, respectively.

Effects of different Wavelet Bases. We show the influence
of different wavelet bases in Table E. The performance dif-
ference in mAPso and m AP is less than 0.4% and the Haar
wavelet base achieves the best performance. This result in-
dicates that our method is not sensitive to the selection of
wavelet bases.
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