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6. Additional Implementation Details
6.1. Teacher Model
In the CMAD framework, both the teacher and student mod-
els have identical architectures. After extracting features
Xi from each modality, these features are passed through a
Conv1D layer to capture contextual and temporal informa-
tion. This step also normalizes the representations to a uni-
form length and dimensionality, specifically a length T of
50 and a hidden dimension D. The processed features from
each modality are then fed into a Perceiver [12] network to
generate modality-specific representations. The Perceiver
architecture, illustrated in Fig. 4a, consists of learnable
units that learn representations using both cross-modal and
self-attention mechanisms [37]. Specifically, the Perceiver
layers employed on MOSEI, IEMOCAP, CHERMA, MUS-
tARD and UR-FUNNY datasets are 5, 4, 4, 3 and 6, re-
spectively. Once the modality-specific representations are
obtained, they are passed through a two-layer Transformer
Encoder followed by a linear layer for feature fusion. The
fused representations are then fed into a fully connected
layer to perform classification and make final predictions.

To further clarify this process, we outline the steps in the
teacher model in detail. Given the multimodal input x =
{X1, X2, ..., Xm}, where each modality Xi ∈ RB×Ti×Di ,
the features are first processed through a Conv1D layer with
a kernel size of 3 × 3 to capture contextual and temporal
relationships. This is represented as:

Xc
i = Conv1D(Xi). (16)

These transformed representations are then passed through
modality encoders, P t

i , which consist of learnable units,
denoted as Et

i ∈ RB×D for P t
i , cross-modal and self-

attention blocks. Specifically, each Perceiver layer consists
of alternating cross-attention and self-attention blocks as in
[12]. In the cross-attention block, the query is set as Et

i , and
the key and value are set as Xc

i , formulated as:
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√
dk

)Xc
iWVx

, (17)

where WQe
,W⊤

x ,WVx
∈ RD×D are trainable weights,

Hca ∈ RB×D. This is followed by a layer normalization
step:

Ĥca = LN(Et
i , Hca) + Et

i , (18)

and a feed-forward layer:

Hff = LN(Wff Ĥca) + Ĥca, (19)

where Wff ∈ RB×B are trainable weights. The self-
attention block follows a similar structure, but the query,
key, and value are set to the same input, e.g. Hff . The
output of the Perceiver is a modality-specific representation
X ′

i ∈ RB×D.
The final step involves fusing the modality-specific rep-

resentations. These outputs are concatenated and passed
through a two-layer transformer encoder, followed by a lin-
ear layer for fusion, as shown in:

Et = W (Transformer Encoder([X ′
1, ..., X

′
m])) + b, (20)

where [·] denotes the concatenation operation, W and b are
weights and bias in linear layer.

6.2. Training Configurations

All models were implemented using the PyTorch frame-
work [28] and trained on a GTX 3090 GPU. The teacher
and student models for the MOSEI, MUStARD, and UR-
FUNNY datasets were trained using the AdamW optimizer
[49]. For these datasets, the teacher model had a hidden di-
mension of D = 96 (MOSEI) and D = 64 (MUStARD,
UR-FUNNY) with a learning rate of 2e − 5. The student
model settings were as follows: MOSEI: G = 20, σ = 0.1,
γ = 1, ϕ = 7.0, and batch size of 128. MUStARD: G = 40,
σ = 0.1, γ = 1, α = 0.9, and batch size of 64. UR-
FUNNY: G = 20, σ = 0.1, γ = 1, α = 0.8, and batch
size of 96. For IEMOCAP and CHERMA, both teacher
and student models were trained using the Adam optimizer
[15]. For IEMOCAP, the teacher model had D = 30 and
a learning rate of 1e − 3. The student model was trained
with a batch size of 120, γ = 0.7, α = 0.9, G = 10, and
σ = 1. For CHERMA, the teacher model had a learning
rate of 2e − 5 and D = 1024. The student model used a
learning rate of 2e− 5, a batch size of 400, γ = 1, α = 0.7,
G = 5, and σ = 1.

6.3. Additional MAR Details

Due to space limitations in the main text, we provide the
detailed framework and pseudo-code of the MAR module
in Figure 5 and Algorithm 1. All referenced equations can
be found in Section 3.4 of the main manuscript, where the
MAR module is discussed in detail. We also present a brief
summary of the key equations involved in these components
in Table 5.



(a) The structure of the modality process Pw
i . (b) The structure of the fusion network Fw .

Figure 4. The structure of Pw
i and Fw in CMAD.

Figure 5. The framework of proposed MAR module.

7. Additional Experiments

7.1. Additional Results on MUStARD and UR-
FUUNY Datasets

We present additional comparisons of the model perfor-
mances on the MUStARD and UR-FUNNY datasets, as
shown in Table 6. Our findings indicate that the models’
performance on these two datasets shares something com-
mon with the performance on the MOSEI dataset. For
instance, across all these datasets, the language modal-
ity consistently exhibits the strongest representation abil-
ity. When the language modality is missing, the perfor-
mance of the TEA model significantly drops. On the other
hand, MMANet and CMADw, which focus on the diffi-
cult modality combinations, perform worse in combinations
related to the language modality compared to the teacher
model. However, CMAD, which consider all modality
combinations, maintains a more consistent representation.
Additionally, we observe that including sample difficulty
(CMADt) leads to a noticeable decrease in overall perfor-
mance. Specifically, in the MUStARD dataset, performance

dropped by 4.85% and 4.6% on two key metrics. Finally,
while the customized models, such as MPLMM, showed
promising results in certain modality combinations (e.g.
‘{V}’ on both datasets), they require multiple runs and do
not account for the varying importance of different modal-
ity combinations. As a result, their overall performance still
lags behind that of our CMAD model.

To further assess the robustness of CMAD to training
randomness, we conducted five independent runs on both
MUStARD and UR-FUNNY using different random seeds.
As illustrated in Figure 6, the results are consistent across
runs, with low variance indicated by narrow error bars,
demonstrating CMAD’s stability under different initializa-
tion conditions.

7.2. Additional Results of Intra-modality Missing-
ness

To further evaluate the general applicability of CMAD in
more realistic scenarios, we follow prior works such as Cor-
rKD [17, 18] and assess model performance under intra-
modality missingness. Specifically, we simulate this condi-



(a) Five runs on MUStARD. (b) Five runs on UR-FUNNY.

Figure 6. Visualization of performance on MUStARD and UR-FUNNY.

Algorithm 1: Modalities-Aware Regularization
Input: Student model prediction ys, teacher model

prediction yt, ground-truth label y, modality
combination used in the student input ∆s,
epoch threshold G

Output: Modalities-Aware Regularization (MAR)
loss LMAR

1 Initialize memory banks Ml (difficulty memory) and
Mp (modality pattern memory);

2 if Epoch E ≤ G then
3 Estimate sample difficulty Ds,t using ys, yt, and

y via Eq. 6 and Eq. 7;
4 Store ∆s into Mp and Ds,t into Ml;
5 Set all weights in Ψ to 1.0;

6 else
7 Compute weights W based on Mp and Ml using

Eq. 8 and Eq. 9;
8 Normalize and refine W to obtain the adjusted

weights Ψ via Eq. 10;

9 Compute task loss LTASK and auxiliary loss
LAUXI using ys, yt, and y according to Eq. 11–13;

10 Aggregate the final loss LMAR by weighting
LTASK and LAUXI with Ψ using Eq. 14;

11 return LMAR;

tion by dropping a portion of the frame-level features within
each modality sequence on the MOSEI dataset. The drop
ratio p ∈ {0.1, 0.2, ..., 1.0} controls the severity of missing
data, where p = 1.0 indicates complete feature removal in
all modalities, and p = 0.1 denotes a 10% loss of repre-
sentation length in each modality. For a fair comparison,
we reproduce CorrKD [18], UMDF [17], MMANet [43],
and MPLMM [8] under identical settings. As illustrated in
Figure 7, CMAD consistently outperforms all baselines in

(a) ‘ACC’ performance. (b) ‘F1’ performance.

Figure 7. Comparison results of intra-modality missingness on
MOSEI.

terms of both accuracy and F1 score across varying levels of
intra-modality missingness, highlighting its strong robust-
ness and adaptability in challenging conditions.

7.3. Analysis on the Consistency in CAFD

Here we provide additional discussion on the consistency
within the CAFD module. Specifically, we analyze four
scenarios: (1) only use the feature consistency calculated
through LMSE in Eq. 1; (2) only use the correlation con-
sistency calculated with LSp in Eq. 3 and LSa in Eq. 4
through LSp + LSa ; (3) use the LCAFD in Eq. 5; and
(4) direct transfer the teacher-teacher correlations Rt,t to
student-student correlations Rs,s, where Rs,s ∈ RB×B is
calculated between the student representations Es using Eq.
2.

The results are shown in Tables 7, 8, 9 and 10. Here
Lmse and Lsim represent the feature consistency loss
(LMSE), and correlation consistency losses (LSp and LSa ),
respectively. A ‘✓’ indicates the application of these losses,
while a ‘×’ indicates a direct transfer of teacher sample cor-
relations to the student model. ‘MSE’ and ‘SIMS’ represent
the corresponding metric values. ‘MSE’ is the average of all
LMSE values, while ‘SIMS’ is the averaged sum of LSp and
LSa . All results are the average values across all seven pos-
sible combinations of missing modalities. Lower values for



Indices Equations Description
Eq. 6 Dw,g

i = LTASK(ywi , yi) Get the sample difficulty from the model w.

Eq. 7 Ds,t
i =

{
0, ifDs,g

i < Dt,g
i

Ds,g
i −Dt,g

i , otherwise
Get the sample difficulty difference.

Eq. 8 Mm(i, j) =

{
1, ifMp(i) = j

0, otherwise
Get the missing modality mask matrix.

Eq. 9 W (j) =

{
0, ifNm(j) = 0
(Ml×Mm)(j)

Nm(j) , otherwise
Get the initial MAR weights.

Eq. 10 Ψ(j) = ρ( W (j)
max(W ) )

2 Get the balanced MAR weights.

Eq. 11 LTASK(yw, y) =

{
MAELoss(yw, y), ifk = 1

CrossEntropy(yw, y), ifk > 1
Get the task-specific loss.

Eq. 12 DKD(ys, yt) = αKL(bt||bs) + (1− α)KL(p̂t||p̂s) Get the auxiliary loss for classification task.

Eq. 13 LAUXI(y
s, yt) =

{
MSE(y

s

ϕ , yt

ϕ ) ∗ (ϕ)2, ifk = 1

DKD(ys, yt), ifk > 1
Get the auxiliary loss for all tasks.

Eq. 14 LMAR = LTASK ∗Mn
m ∗Ψ+ γLAUXI ∗Mn

m ∗Ψ Get the final MAR loss.

Table 5. Equations in Modalities-Aware Regularization module.

Set Models
Modalities

Avg.
L A V L,A L,V A,V L,A,V

Results on MUStARD

C
MPLMM[8] 67.6/68.1 61.8/61.8 61.8/61.8 67.6/68.1 67.6/68.1 61.8/61.8 67.6/68.1 65.1/65.4
UMDF[17] 72.1/72.8 66.2/67.5 51.5/60.6 72.1/72.8 72.1/72.8 58.8/59.1 72.1/72.8 66.4/68.3
CorrKD[18] 72.1/72.1 66.2/67.9 45.6/50.2 72.1/72.1 72.1/72.1 57.4/59.0 72.1/72.1 65.3/66.5

U

TEA 70.6/71.0 52.9/57.4 52.9/57.4 70.6/71.0 70.6/71.0 52.9/57.4 70.6/71.0 63.0/65.2
MMANet[43] 69.1/69.1 64.7/66.3 47.1/53.2 69.1/69.1 69.1/69.1 60.3/61.4 69.1/69.1 64.1/65.3

CMADw 70.6/70.7 64.7/66.3 45.6/49.2 70.6/70.7 69.1/69.4 60.3/62.3 70.6/70.7 64.5/65.6
CMADt 72.1/72.1 57.4/59.0 47.1/54.6 72.1/72.1 72.1/72.1 55.9/57.3 72.1/72.1 64.1/65.6
CMAD 76.5/76.7 67.6/68.1 47.1/54.6 76.5/76.7 76.5/76.7 61.8/62.3 76.5/76.7 68.9/70.2

Results on UR-FUNNY

C
MPLMM[8] 71.7/71.8 52.3/54.3 53.0/54.9 72.4/72.5 71.7/71.8 54.8/55.2 72.4/72.5 64.0/64.7
UMDF[17] 71.8/71.8 53.7/54.2 52.4/54.9 72.1/72.2 71.8/71.9 56.1/56.2 72.2/72.3 64.3/64.8
CorrKD[18] 72.4/72.4 53.8/54.0 52.0/54.5 72.5/72.5 72.4/72.4 56.2/56.3 72.4/72.4 64.5/64.9

U

TEA 72.7/72.7 52.7/54.2 52.7/54.2 72.7/72.7 72.7/72.7 52.7/54.2 72.7/72.7 64.1/64.8
MMANet[43] 71.0/71.2 53.1/53.2 52.1/52.8 70.7/70.9 70.9/71.1 55.3/55.7 70.6/70.8 63.4/63.7

CMADw 71.4/71.5 53.6/53.6 52.5/53.5 71.8/71.9 71.4/71.5 55.0/55.3 71.5/71.6 63.9/64.1
CMADt 72.5/72.5 53.0/53.4 51.7/53.0 72.5/72.5 72.3/72.3 55.7/55.8 72.3/72.3 64.3/64.6
CMAD 72.8/72.9 54.2/54.4 52.5/53.4 73.1/73.2 73.0/73.0 56.2/56.4 73.3/73.3 65.0/65.2

Table 6. Performance comparison under different modality combinations on MUStARD and UR-FUNNY datasets. ‘ACC/F1’ is reported.

both metrics are preferred, as they represent the differences
in features and correlations across samples.

From Tables 7 and 8, we note a notable trend: modal-
ity combinations with lower metric values, indicating bet-
ter consistency, consistently perform better in predictive
tasks. This trend underscores that robust consistency across
modality combinations positively impacts model accuracy.
Additionally, we identify a consistent pattern: Using only

Lmse yields the best feature consistency, while Lsim alone
achieves near-optimal correlation consistency. However,
each performs poorly when evaluated on the other metric,
highlighting the limitations of relying on a single consis-
tency. A balanced approach, combining both losses, yields
improved performance across metrics. Moreover, direct
correlation transfer performs the worst on both feature and
correlation consistency. These findings highlight the neces-



Losses Modalities
Avg.Lmse Lsim MSE SIMS L A V L,A L,V A,V L,A,V

✓ ✓ ✓ 0.29 0.33 0.36 0.28 0.30 0.36 0.29 0.32
✓ ✓ 0.29 0.32 0.34 0.29 0.30 0.35 0.31 0.31

✓ ✓ 0.36 0.45 0.45 0.36 0.36 0.46 0.37 0.40
× ✓ 0.67 0.76 0.70 0.67 0.64 0.72 0.63 0.68

✓ ✓ ✓ 0.63 2.34 2.39 0.63 0.71 2.29 0.76 1.39
✓ ✓ 1.00 2.45 2.29 1.12 1.18 2.30 1.29 1.66

✓ ✓ 0.66 2.18 2.21 0.68 0.68 2.15 0.68 1.32
× ✓ 2.92 2.52 2.68 2.87 3.05 2.55 2.96 2.79

Table 7. Consistency results of different consistency losses used in LCAFD on MOSEI dataset. Lower value is better.

Losses Modalities
Avg.Lmse Lsim MSE SIMS L A V L,A L,V A,V L,A,V

✓ ✓ ✓ 1.36 1.23 1.44 1.23 1.31 1.20 1.21 1.28
✓ ✓ 1.17 1.12 1.49 0.94 1.09 1.07 0.90 1.11

✓ ✓ 2.73 2.36 2.41 2.75 2.70 2.41 2.73 2.58
× ✓ 3.08 2.62 2.40 3.30 3.27 2.86 3.47 3.00

✓ ✓ ✓ 1.70 1.65 2.34 1.18 1.45 1.44 1.02 1.54
✓ ✓ 1.78 1.80 2.75 1.15 1.54 1.58 1.00 1.66

✓ ✓ 1.64 1.69 2.34 1.20 1.46 1.52 1.09 1.56
× ✓ 3.17 3.20 2.84 3.29 3.19 3.28 3.36 3.19

Table 8. Consistency results of different consistency losses used in LCAFD on IEMOCAP dataset. Lower value is better.

(a) Similarity distribution with CL. (b) Similarity distribution w/o CL.

Figure 8. Similarity distribution visualization on MOSEI.

sity of simultaneously considering both feature and correla-
tion consistencies. Additionally, as demonstrated in Tables
9 and 10, focusing exclusively on either feature or correla-
tion consistency results in reduced overall performance.

To further highlight the effectiveness of contrastive
learning (CL) in capturing high-level semantics within
CAFD, we analyze the similarity distribution between pos-
itive and negative pairs on the MOSEI dataset. As shown
in Figure 8, the inclusion of CL leads to higher similarity
among positive pairs and lower similarity among negative
pairs. These results clearly illustrate the positive impact of
CL in enhancing semantic alignment and discrimination.

7.4. Analysis on the Loss Components in MAR

In this section, we conduct additional ablation experiments
to analyze the significance of each loss component in the
CMAD model. As shown in Table 11 and Table 12, remov-
ing any of the loss modules results in a decline in overall
performance. Specifically, LTM , LAM , LT , LA, LC rep-
resents the use of the MAR weights in LTASK , the MAR
weights in LAUXI , the LTASK , the LAUXI and LCAFD,
respectively.

In the multimodal regression task on the MOSEI dataset,
removing the LAUXI led to the most significant decrease
in F1-score, while removing all MAR weights caused the
largest drop in accuracy. This suggests that in the regression
task, the LAUXI is crucial for transferring knowledge from
the teacher model to help the student model learn consis-
tent representations, while the MAR weights are essential
for guiding the model in understanding the importance of
different modality combinations, thereby enhancing its per-
formance. For multimodal classification task on the IEMO-
CAP dataset, removing the LAUXI resulted in the largest
decrease in accuracy, while the absence of the LTASK led
to the most substantial decline in the F1-score. This indi-
cates that in classification tasks, it is vital to consider the
probability distribution over the categories. Relying solely
on guidance from the teacher model or focusing only on the
LTASK leads to a loss of critical information, thereby im-



(a) Visualization of MAR weights with Dt,g . (b) Visualization of MAR weights without Dt,g . (c) Visualization of MAR weights difference.

Figure 9. Visualization of MAR weights and MAR weights distances on MOSEI dataset.

Losses Modalities
Avg.Lmse Lsim L A V L,A L,V A,V L,A,V

✓ ✓ 86.1/86.0 63.0/60.8 65.7/64.4 86.3/86.2 86.4/86.4 65.6/64.8 86.1/86.1 77.03/76.39
✓ 85.7/85.6 63.5/59.2 63.8/63.7 85.6/85.5 85.8/85.8 64.9/64.4 85.7/85.8 76.43/75.71

✓ 85.2/85.1 63.5/59.6 64.4/64.1 85.1/84.9 86.1/86.0 64.8/64.2 85.6/85.6 76.39/75.64
× 85.6/85.5 63.6/59.0 63.3/63.3 85.4/85.2 85.5/85.4 64.7/64.2 85.5/85.5 76.23/75.43

Table 9. Performance of different consistency losses used in LCAFD on MOSEI dataset. Higher value is better.

Losses Modalities
Avg.Lmse Lsim L A V L,A L,V A,V L,A,V

✓ ✓ 79.5/78.7 79.2/76.7 73.6/70.6 81.9/81.3 79.7/79.1 79.0/77.3 81.7/81.2 79.23/77.84
✓ 78.2/77.0 78.5/75.9 73.5/70.1 81.2/80.1 77.7/76.6 78.6/76.8 80.8/79.8 78.36/76.61

✓ 78.6/77.4 78.4/75.9 74.3/71.2 81.1/80.2 78.7/77.8 79.4/77.8 81.4/80.6 78.84/77.27
× 77.7/77.1 77.5/74.6 73.3/70.5 79.9/79.3 77.9/77.3 77.7/76.0 80.4/79.9 77.78/76.39

Table 10. Performance of different consistency losses used in LCAFD on IEMOCAP dataset. Higher value is better.

Losses Modalities
LTM LAM LT LA LC L A V L,A L,V A,V L,A,V
✓ ✓ ✓ ✓ ✓ 86.1/86.0 63.0/60.8 65.7/64.4 86.3/86.2 86.4/86.4 65.6/64.8 86.1/86.1
✓ ✓ ✓ ✓ 85.6/85.4 63.8/60.4 63.3/62.6 85.5/85.4 85.4/85.3 64.2/63.6 85.7/85.6

✓ ✓ ✓ 85.3/85.3 58.9/59.5 63.8/63.0 85.1/85.1 85.6/85.5 64.1/64.2 85.6/85.6
✓ ✓ ✓ ✓ 85.6/85.4 63.8/57.8 64.6/60.3 85.6/85.5 85.8/85.7 66.6/64.3 86.0/86.0

✓ ✓ ✓ ✓ 85.5/85.4 64.0/58.7 64.3/61.8 85.6/85.6 86.1/86.0 65.7/64.3 85.9/86.0
✓ ✓ ✓ 85.7/85.6 60.0/60.0 64.3/64.1 85.6/85.4 85.6/85.6 65.3/64.7 85.9/85.9

✓ ✓ ✓ 85.0/84.7 64.4/54.5 64.1/60.3 85.2/85.1 85.5/85.3 66.7/64.1 85.8/85.7

Table 11. Ablation of different loss components used in Ltotal on MOSEI dataset.

Losses Modalities
LTM LAM LT LA LC L A V L,A L,V A,V L,A,V
✓ ✓ ✓ ✓ ✓ 79.5/78.7 79.2/76.7 73.9/70.6 81.9/81.3 79.7/79.1 79.0/77.3 81.7/81.2
✓ ✓ ✓ ✓ 78.9/77.8 79.2/75.9 72.8/69.2 81.4/80.4 79.0/77.9 78.6/76.2 81.5/80.4

✓ ✓ ✓ 78.6/77.2 77.9/73.0 75.3/70.1 80.6/79.5 79.7/78.6 78.9/75.9 81.5/80.6
✓ ✓ ✓ ✓ 78.7/76.7 76.7/72.2 73.5/69.5 80.6/78.7 79.2/77.5 78.5/75.9 81.3/79.9

✓ ✓ ✓ ✓ 78.8/77.6 77.7/74.8 74.0/69.3 80.5/79.3 78.9/77.7 77.7/75.3 81.1/80.0
✓ ✓ ✓ 78.4/75.6 78.1/73.7 75.5/68.5 80.4/78.1 78.8/76.3 78.8/74.9 80.8/78.6

✓ ✓ ✓ 78.1/77.3 78.0/75.6 73.7/70.5 79.5/78.8 77.9/77.3 78.4/76.8 80.0/79.4

Table 12. Ablation of different loss components used in Ltotal on IEMOCAP dataset.



(a) Visualization of different α. (b) Visualization of different γ.

(c) Visualization of different σ. (d) Visualization of different ρ.

Figure 10. Visualization of the performance of different hyper-
parameters on IEMOCAP dataset.

pairing the model’s performance.

7.5. Analysis on Sample Difficulty
To clearly illustrate the effects of sample difficulty, we an-
alyze the MAR weights from the MOSEI dataset before
the starting epoch 20. This includes weights that elimi-
nates sample difficulty, those that do not, and the differ-
ences between them, as shown in Fig. 9. Our findings in-
dicate that, regardless of whether sample difficulty is elimi-
nated, the weights for each modal combination change sim-
ilarly over the epochs. However, the range of decline varies
between the two conditions. Without eliminating sample
difficulty, the weights for hard combinations decrease at a
slower rate, ultimately stabilizing around a value of 4, com-
pared to around 2.5 when sample difficulty is eliminated.
Moreover, for easy modality combinations, the difference
in weights initially increases, then decreases. In contrast,
weights for difficult modality combinations gradually in-
crease, leading to a shift in the relative magnitudes of MAR
weights, from an 8-fold difference to a 4-fold difference.
This pattern indicates that, when sample difficulty is elim-
inated, the model learns a more consistent relationship be-
tween modality combinations, resulting in a more consistent
representation that better adapts across all modality config-
urations.

7.6. Analysis on Hyper-parameters
To better understand the impact of different hyper-
parameters, we conduct additional experiments across MO-
SEI and IEMOCAP datasets. The results from all seven
possible combinations of missing modalities are averaged
for comparison, as shown in Fig. 10 and Fig. 11. Our find-

(a) Visualization of different ϕ. (b) Visualization of different γ.

(c) Visualization of different σ. (d) Visualization of different ρ.

Figure 11. Visualization of the performance of different hyper-
parameters on MOSEI dataset.

ings are summarized as follows: (1) Increasing α, which
amplifies the loss of the target class for classification tasks,
does not always lead to better performance. In fact, the
probabilities from non-target class samples also play a cru-
cial role. (2) Increasing ϕ in the auxiliary loss LAUXI for
regression task can improve model performance. (3) Mod-
erately increasing the weight of LAUXI , represented by γ,
enhances performance. However, if γ exceeds the weight of
the main task loss LTASK , it can lead to performance degra-
dation. (4) Similarly, excessively increasing the weight of
LCAFD, denoted by σ, can negatively affect results. (5)
Increasing the value of MAR weights Ψ too much, repre-
sented by ρ, can also degrade performance.


