
A. More Qualitative Results
We show more qualitative results of Long-LRM in Fig. 6
and project page (http://arthurhero.github.io/
projects/llrm/), including a video comparison with
optimization-based 3D GS methods.

B. More Hyperparameter Settings
Gaussian parameters. We use SH degree 3 for predicted
Gaussian colors. We apply a bias -6.9 and a maximum
cap -1.2 to the Gaussian scales before sending them to the
exponential function. We apply a bias -2.0 to the opacity
values before sending them to the sigmoid function. We
align the per-pixel Gaussians to the camera rays originated
from the pixels.
Camera pose normalization. In the dataloader, we cal-
culate the average pose of the input cameras by averaging
the forward-, downward- and rightward camera directions,
and use the cross-product method to obtain an orthonormal
rotation matrix along with the average camera positions in
the world coordinate. We use the inverse of this average
camera pose to normalize all cameras. Finally, we rescale
the camera positions to a [-1,1] bounding box.

C. Experiment Details for Ablation Studies on
Model Architecture

In Table 4, we present the model architecture ablation studies
with different length of input sizes. We train all variants on
DL3DV-10K and evaluate on DL3DV-140. The number of
training steps are empirically decided based on the model
convergence. We study the model behavior under four dif-
ferent settings: 4 input views at 256⇥256, 32 input views at
256⇥256, and 32 input views at 512⇥512, and our extreme
setting: 32 input views at 960⇥540.

For these ablation studies, we use a shorter frame range
during evaluation for fair comparisons among each exper-
iments. In details, we choose the first 96 frames from the
original video frame sequence, then uniformly sample 8 test
views. The 4 to 32 training views are then uniformly sam-
pled from the rest views, i.e., not overlapping to the testing
views. We keep the same set of training and testing views for
different experimental setups. The input images are resized
and center-cropped to squares except for the last row.

D. Additional Experiment Results
D.1. More results on RealEstate10K.
We report the performance of Long-LRM with and without
depth and opacity losses on RealEstate10K in Tab. 10. We
observe that the losses are less essential for this two-view
setup, as the opacity loss aims to save the number of Gaus-
sians and the depth loss helps stabilize training for our long

Method Init PSNR" Chamfer# F-Score"

2D GS COLMAP 19.25 0.193 0.272
Long-LRM(2D) / 23.27 0.135 0.414

Table 8. Novel view synthesis (PSNR) and mesh recon-
struction quality (Chamfer and F-Score) comparison with
optimization-based 2D GS on ScanNetv2 test split.

Input
Views

Depth
Supervision

Zero-
shot Method Abs Diff# Abs Rel# Sq Rel# �<1.25"

80⇠800
(every 10th) 3 7

COLMAP [41] 0.264 0.137 0.138 83.4
Atlas [38] 0.123 0.065 0.045 93.6
VoRTX [43] 0.092 0.058 0.036 93.8

32 7 3 Long-LRM 0.119 0.073 0.051 94.0

Table 9. We evaluate Long-LRM(2D)’s ability for zero-shot full-scene
geometry reconstruction on the ScanNetv2 test split [9]. With only 32
input images, we render median-depth maps from the reconstructed 2D
Gaussians and evaluate against the ground-truth depth at all frames in each
scene sequence. To put into context, we also list performance of past MVS
approaches under the same evaluation settings that use much denser input
views and are trained on ScanNet training split with ground-truth depth.

Method Loss Type PSNR" % Gaussians w/
opacity>0.001

GS-LRM rendering-only 28.10 99.9
Long-LRM rendering-only 28.54 99.9
Long-LRM +opacity+depth 28.44 44.7

Table 10. Ablation studies on
training objectives with 2-view 256-
resolution setup on RealEstate10K.

Layers PSNR" Iter Time (sec) Memory (GB)

{1T7M}⇥3 21.62 2.9 35
{7M1T}⇥3 21.58 2.6 35
3T21M diverged 3.8 35
21M3T diverged 3.8 35

Table 11. Ablation study on the
layer combination of transformer and
Mamba2.

input setup. We also turn off the token merging module for
this setup as saving resources is no longer necessary. We
show qualitative comparisons in Fig. 7, where Long-LRM
demonstrates better rendering of details than baselines.

D.2. Zero-shot results on ScanNetv2.
We present several zero-shot reconstruction results on the
ScanNetv2 test split with our model trained solely on
DL3DV-10K. We add aspect ratio augmentation in stage
3 of training, where the input image are randomly cropped
between 1:1 to 1.77:1. During inference, we sample 32 input
images from each scene of ScanNet and resize the images
so that the height is 540.

We report in Table 8 the novel view synthesis and the
mesh reconstruction quality comparison between Long-
LRM(2D GS ver.) and the optimization-based 2D GS. For
novel view synthesis, we evaluate on every 80-th frame,
given the denser image sequence of ScanNet. For mesh
reconstruction, we render median-depth maps from the re-
constructed 2D Gaussians at every 10th camera and use
TSDF fusion (voxel 4cm) to construct the mesh. Note that
the 32-view setup is relatively sparse for ScanNet scenes,
leading to poor performance of optimization-based 2D GS,
even with the extra COLMAP initialization, stressing the
value of the prior knowledge learned by our model.

Table 9 reports quantitative results in terms of depth map

http://arthurhero.github.io/projects/llrm/
http://arthurhero.github.io/projects/llrm/
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Figure 5. Zero-shot reconstruction results on ScanNetv2 from Long-LRM (2D GS ver.). We render both RGB images and depth maps
from the predicted 2D Gaussians. The depth maps exhibit fine object details, demonstrating Long-LRM’s capability for instant geometry
reconstruction on complicated novel scenes.

Full-Scene Gaussian Reconstruction Novel View Synthesis

Figure 6. More qualitative results from Long-LRM’s wide-coverage scene reconstruction. The left column illustrates the overlook
of the reconstructed Gaussians, and the right columns show high-quality synthesized novel views from different perspectives. These
examples demonstrate Long-LRM’s ability to handle diverse and complex scenes, accurately reconstructing fine-level details, and generating
photorealistic views from multiple angles, effectively capturing both geometric and appearance variations.

quality metrics. We render depth maps from the predicted
2D Gaussians at all keyframes in the video sequence at the
original resolution of 1272⇥948. To put the results in context,
we list the performance of a few classic multi-view stereo
approaches that are trained on the ScanNet train split with
ground-truth depth supervision under the same evaluation

settings. Fig. 5 shows the qualitative results of the color and
depth renderings from the predicted 2D Gaussians.

D.3. Ablation studies on layer combination.
Long-LRM uses a hybrid architecture of Mamba2 and trans-
former blocks. In Table 11 we study the impact of different
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Figure 7. Qualitative comparison on RealEstate10K.

block combination configurations on model performance.
We use the 4-input settings at image resolution 256 ⇥ 256
without token merging. We found that if the transformer
blocks are even distributed among the Mamba2 blocks, then
the model training is more stable than transformer blocks
being concentrated at the beginning or the end of the model.
The PSNR curves during training do not differ much for the
configurations in the table, including the ones that diverge at
the end.

E. Limitations
We now briefly discuss the limitations. While we have suc-
cessfully scaled the model to support 32 high-resolution
views and achieved wide-coverage large-scale GS reconstruc-
tion, we observe only marginal performance improvements
when further increasing the number of input views. Specif-
ically, increasing the input to 64 views only leads to less
than 1 dB PSNR improvement. Notably, 64 high-res images
correspond to extremely long sequences, exceeding 500K
in context length, which presents a significant challenge for
current sequence processing models. Addressing this limi-
tation will require future work to better manage ultra-long
sequences. Additionally, since the entire DL3DV training set
contains images with a fixed wide field of view (FOV), we
found that our model struggles to generalize on test sets with
significant FOV variations (e.g., the MipNeRF360 dataset
with a much smaller FOV). We suspect this limitation is due
to the use of Mamba2 blocks, as differing FOVs can alter
the meaning of tokens at different positions. Developing
models that can generalize effectively across varying FOVs
may require more diverse datasets with a range of various
FOVs, at a scale similar to DL3DV.
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