Activation Subspaces for Out-of-Distribution Detection

Supplementary Material
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Figure 5. Score distributions of ID and OOD data. We fit mul-
tivariate Gaussians to the concatenated (along a new second di-
mension) score values from the decisive (§) and insignificant (§)
components of the sampled ID (ImageNet-1k [9, 44]), Near-OOD
(NINCO [3]), and Far-OOD (Textures [7]) data. We use ResNet-
50 [16]. Score values are negated to visualize in the positive do-
main.

A. Additional Experiments

We extend our experiments in the setting of Sec. 4.3. We
use the OpenOOD [63] benchmark and report Near-OOD
and Far-OOD results separately.

ViT. Tab. 8 reports the accuracy of our method ActSub
with ViT-B/16 [12], ResNet-50, and their average. Since
activation shaping methods (including SCALE) are known
to perform worse on ViTs [11, 51, 57], we additionally com-
bine ActSub with GEN [37] on the decisive component.
For ViT, we use the prototype variant of ID data (see be-
low: “Dependence on the data volume”) for the insignifi-
cant component, which we empirically found to work better.
For ViT, ActSub improves GEN and SCALE [57], particu-
larly in Near-OOD, improving the AUC by 2.15 %/18.09 %
and reducing the FPR by 6.68 %/28.10 %, respectively. Re-
markably, when considering the average of ResNet and ViT,
our variant with SCALE reaches SotA accuracy.

Visualization of the score distributions. Fig. 5 visualizes
the score distributions of our decisive (§ ) and insignificant
(§) components for ID, Near-OOD, and Far-OOD data. For
ID, Near-OOD, and Far-OOD, we use ImageNet-1k [9, 44],
NINCO [3], and Textures [7], respectively. We observe that
the Far-OOD data is better separated from the ID data with
the score of the insignificant component. Inversely, Near-
OOD and ID are better separated by the score of the deci-
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Figure 6. Classification and OOD detection accuracy (%, 1) for
different ratios of the norms of decisive and insignificant compo-
nents with ResNet (orange) and MobileNet (blue). The AUC is
calculated by the average of datasets in OpenOOD [63], and ID is
ImageNet-1k [9, 44].

sive component. With this observation, we emphasize the
complementary effect of our two score functions.

Choice of hyperparameter k. Ideally, the decisive sub-
space exclusively captures the classification signal while
the insignificant subspace captures all information that does
not aid classification. We plot the OOD-detection and ID-
classification accuracy against the norm ratio of the two
components — which is proportional to k — in Fig. 6. For
ID, we use ImageNet-1k [9, 44]), and for OOD, we consider
the average accuracy of the datasets in OpenOOD [63]. The
ID-classification accuracy already saturates with a balanced
decomposition where the norms of the two components are
equal (1/1), corresponding to the ratio we propose in our
experiments. Shifting the balance towards a (smaller k),
causes classification-related directions to be captured in the
insignificant subspace, which has a detrimental effect on
OOD detection (c¢f. Tab. 6). Inversely, shifting the balance
towards a (larger k) results in insignificant directions be-
ing captured by the decisive subspace, and consequently,
increasing interference. To summarize, deviations in either
direction from the 1/1 ratio reduce the OOD-detection ac-
curacy, confirming our choice in Eq. (6).

Sensitivity of hyperparameter A. The hyperparameter A
weights the information of the decisive component (§ ) that
excels in Near-OOD and the information of the insignificant
component (§) that excels in Far-OOD. In other words, A
balances the discriminative information of each subspace
that targets a different aspect of the distribution shift. In
practice, not only the scale but also the variation and the
margin of each score distribution might vary. To account
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Figure 7. Sensitivity of hyperparameter \. We report the AUC for
our method ActSub (§) for different A values for Near-OOD and
Far-OOD of the OpenOOD [63] benchmark. We use a ResNet-
50 [16] model trained on ImageNet-1k [9, 44].

for this, we define A as an exponent (instead of a simple
weighting factor) and ensure that the score function of each
component contributes sufficiently to the final score (§).

We investigate the effect of the hyperparameter A on the

accuracy of our method ActSub in Fig. 7. Note that A = 0
is equivalent to only using the score of the decisive compo-
nent. We observe that Near-OOD performance is relatively
unaffected by A. On the other hand, for Far-OOD, intro-
ducing the cosine similarity-based score of our insignificant
component with increasing ) significantly increases the ac-
curacy. We use A = 0.5, 1,2 for MobileNetV2 [45], ViT,
and ResNet-50, respectively. For ViT with GEN [37], we
use A = 0.5. In the main experiments with ImageNet-
1k [9, 44] (¢f. Tabs. 1 and 2), we use NINCO [3] as the held-
out validation set. For CIFAR [29], we use MNIST [30].
For OpenOOD [63] experiments, we use the OpenOOD val-
idation split.
Sensitivity of the decisive component. We design the de-
cisive component (§) to capture the information related to
the classification task, which we assume to be mostly se-
mantic information. To reflect this, when tuning the hy-
perparameters of the decisive component, i.e., the hyper-
parameters of SCALE [57] or GEN [37], we incorporate
ImageNet-R [19], which includes stylized renditions of Im-
ageNet classes, along with ImageNet-1k as an ID dataset.
By doing so, we introduce non-semantic variations to the
ID data and guide the decisive component to focus on the
semantic variations between ID and OOD distributions. We
select the parameter that maximizes the difference between
AUC and FPR.

In Fig. 8, we present how the pruning percentage p of
the activation shaping method SCALE [57] affects the ac-
curacy of our combined score function (§). For Far-OOD,
the effect of p is insignificant. However, for Near-OOD,
the accuracy increases with increasing p. For the original
SCALE, i.e., when applied on the whole activation, the ac-

100 T T T T T

_ M — . —
§ 90 | Near ||
2wl ~— ]

80 | |

75 80 85 90 95
p

Figure 8. Sensitivity of pruning percentage p of SCALE. We report
the AUC for our method ActSub (§) for different percentages of
pruning (p) for Near-OOD and Far-OOD from the OpenOOD [63]
benchmark. We use a ResNet-50 [16] model trained on ImageNet-
1k [9, 44].

curacy has been shown to decrease after 85 % [57]. We
believe this is because SCALE needs to keep more chan-
nels to capture discriminative information when applied to
the whole representation. In contrast, when only applied to
the decisive component (§), SCALE benefits from higher
pruning percentages — with the interference of the insignifi-
cant component being removed from the activation, a higher
pruning percentage still captures the important channels for
the model’s prediction.

Near-OOD (Avg.) Far-OOD (Avg.)
Volume Sampling AUC (1) FPR(}) AUC(T) FPR(J)
10% (Tab.4) ~ Random 84.24 52.60 96.96 14.29
1% Random 83.33 54.99 96.69 15.62
1% Averaging 83.48 54.75 96.90 14.50
0.1% Clustering 83.73 54.41 96.85 14.77

Table 7. Accuracy (in %) of our unified score function with differ-
ent data volumes and sampling strategies. We use ResNet-50 [16]
trained on ImageNet-1k [9, 44], and evaluate on OpenOOD [63].

Dependence on the data volume. Tab. 7 shows the OOD
detection accuracy of our method using different amounts
of ID data used to compute the cosine similarity of the in-
significant component. Compared to 10% used in our main
method, reducing the data volume to 1% either by random
sampling or sample averaging maintains strong accuracy.
Furthermore, we evaluate a prototype approach, where each
sample is a cluster center obtained by applying k-means to
the insignificant component sampled from the training split.
The number of prototypes corresponds to 0.1% of the train-
ing data volume. This shows that we can (i) significantly
reduce memory requirements with a sparse set of represen-
tations (0.1% of the data volume), (ii) reduce privacy vul-
nerability, as reconstructing individual samples from cluster
centers is harder, and (iii) retain the significant improvement
over previous methods (cf. Tab. 4).



ViT-B/16 ResNet-50 Avg. of ResNet & ViT

Method Near Far Near Far Near Far
RMDS [43] 80.09/65.36  92.60/28.76 76.99/65.04  86.38/40.91 78.54/6520  89.49/34.83
ViM [52] 77.03/73.73  92.84/29.18 72.08/71.35  92.68/24.67 74.55/72.54  92.76/26.93
KNN [55] 74.11/7047  90.81/31.93 71.10/70.87  90.18/34.13 72.60/70.67  90.50/33.03
SHE [37] 76.11/70.88  92.42/27.12 73.78 /73.01 90.92/41.45 7495/71.94  91.67/34.28
GEN [62] 76.30/70.78  91.35/32.23 76.85/65.32  89.79/35.61 76.57/68.05  90.57/33.92
WeiPer [14] 75.00/73.02  90.32/38.16 80.05/61.39  95.54/22.08 77.52/67.20  92.93/30.12
SCALE [57] 59.03/93.94  75.22/86.93 81.36/59.76  96.53/16.53 70.19/76.85  85.87/51.73
§>ActSub w/ GEN 78.45/64.10  91.62/29.19 77.81/62.97  95.90/18.26 78.13/63.54  93.76/23.73
>

S ActSub w/ SCALE 77.12/65.84  90.64/31.00 84.24/52.60  96.96 / 14.29 80.68/59.22  93.80/22.65

Table 8. Accuracy of our unified score function reported with ViT and ResNet. The format is AUC (%, 1) / FPR (%, J.). Models trained on

ImageNet-1k [9, 44], and evaluated on OpenOOD [63].

B. Expanded Tables

We provide an expanded version of the tables (Tabs. 3
and 4) for our CIFAR [29] and OpenOOD [63] experiments
in Sec. 4.2. Tab. 9 shows the accuracy of our method Act-
Sub compared to baselines for each separate OOD dataset
for when CIFAR10 and CIFAR100 are ID. Similarly, in
Tab. 10, we present the accuracy of ActSub for each in-
dividual dataset in Near-OOD and Far-OOD settings of the
OpenOOD benchmark.



SVHN iSUN Textures Places365 Average

Method AUC (1)  FPR({) AUC (1)  FPR({) AUC (1) FPR () AUC (1)  FPR({) AUC (1)  FPR({)
Energy [36] 93.99 40.61 98.07 10.07 86.43 56.12 91.64 39.40 9118 54.18
o ReAct[51] 93.87 41.64 97.72 12.72 92.47 43.58 91.03 4341 93.77 3531
&  DICE [50] 95.90 25.99 99.14 436 88.18 41.90 89.13 48.59 93.09 3021
£  LNe[l] 97.75 1138 99.01 4.90 95.12 23.44 91.17 43.96 95.75 20.88
O ASHS[I1] 98.65 6.51 98.90 5.17 95.09 2434 88.34 48.45 95.25 2112
DDCS [61] 97.95 9.90 99.11 445 95.96 20.16 9119 42.90 96.05 19.35
SCALE [57] 98.72 5.80 99.21 343 94.97 23.42 9174 38.69 96.16 17.84
5 ActSub (ours) 99.09 439 99.17 345 96.76 17.38 92.47 3627 96.87 15.37
Energy [36] 81.85 87.46 78.95 74.54 71.03 84.15 7172 79.20 7739 81.34
S ReAct[5]] 81.41 83.81 86.55 65.27 78.95 7178 74.04 82.65 80.24 7738
= DICE[50] 88.84 54.65 90.08 48.72 76.42 65.04 77.26 79.58 83.15 62.00
£ LINe[]] 91.90 31.10 94.76 24.12 87.84 39.29 64.18 88.41 84.63 4574
S ASHS[I]] 95.76 25.02 9130 46.67 9235 34.02 71.62 85.86 87.76 47.89
DDCS [61] 92.58 3134 96.17 18.46 90.29 3530 6791 87.11 86.73 43.05
SCALE [57] 96.29 22.05 9247 42.14 92.34 3420 72.66 85.04 88.44 45.86
S ActSub (ours) 97.45 13.72 91.43 43.83 95.07 23.44 73.46 84.06 89.35 4126

Table 9. Expanded version of CIFAR results for DenseNet-101, showing each dataset individually (all in %). We report results with
CIFAR10 [29] and CIFAR100 [29] as ID and SVHN [40], iSUN [59], Places365 [65], and Textures [7] as OOD.

Method NINCO(Near) SSB-Hard(Near) Near-OOD(Avg.) iNaturalist(Far) Textures(Far) OpenImage-O(Far) Far-OOD(Avg.)
MSP [17] 79.95/56.88 72.09 /74.49 76.02/65.68 88.41/43.34 82.43/60.87 84.86/50.13 85.23/51.45
Energy [36] 79.70 / 60.58 72.08 /76.54 75.89/68.56 90.63 /31.30 88.70/45.77 89.06 /38.09 89.47/38.39
ReAct [51] 81.73/55.82 73.03/717.55 77.38 1 66.69 96.34/16.72 92.79/29.64 91.87/32.58 93.67/26.31
RankFeat [48] 55.89/89.63 46.08 /94.03 50.99/91.83 40.06 / 94.40 70.90/76.84 50.83/90.26 53.93/87.17
ViM [52] 78.63/62.29 65.54 /80.41 72.08/71.35 89.56 /30.68 97.97/10.51 90.50/32.82 92.68 /24.67
SHE [62] 76.49 /69.72 71.08 /76.30 73.78 /73.01 92.65/34.06 93.60/35.27 86.52/55.02 90.92/41.45
GEN [37] 81.70 / 54.90 72.01/75.73 76.85/65.32 92.44/26.10 87.59/46.22 89.26/34.50 89.76 /35.61
ASH-S [11] 84.54/53.26 74.72 /70.80 79.63/62.03 97.72/11.02 97.87/10.90 93.82/28.60 96.47/16.86
WeiPer+KLD [14] 85.37/48.67 74.73/174.12 80.05/61.39 97.49/13.59 96.18/22.17 92.94/30.49 95.54/22.08
SCALE [57] 85.37/51.80 77.35/67.72 81.36/59.76 98.02/9.51 97.63/11.90 93.95/28.18 96.53/16.53
S ActSub w/ ReAct 83.87/51.01 71.53/79.71 77.70 / 65.36 97.92/8.85 98.13/8.64 93.62/29.23 96.56 /15.57
>

S ActSub w/ ASH-S 87.42/43.36 80.70 / 61.58 84.06/52.47 98.06 / 8.48 98.24/9.16 94.41/25.03 96.91/14.22
<>

S ActSub w/ SCALE 87.35/43.49 81.14/61.71 84.24 /52.61 98.51/6.79 98.26 / 8.44 94.11/27.54 96.96 / 14.29

Table 10. Expanded version of OpenOOD results for ResNet-50 trained on ImageNet-1k, showing each dataset individually (all in %).
Reported results are in the format AUC (1) / FPR ({).



