
A. Notations
We summarize the key notations and definitions used in this
work in Table 6.

Symbol Description
x Original image
xw Copyrighted or watermarked image
w Value of a watermark (e.g., bit stream, pattern)
x∗ Attack image
xt Latent variable at timestep t
x̂t Anchor latent variable at timestep t
x∗
t Attack latent variable at timestep t
ε̂t Predefined margin at timestep t
t Arbitrary timestep
T Total timesteps for diffusion process
G A generative model, e.g., diffusion model
V Verifier/arbiter for copyright violations

d(·, ·) Distance metric
ϵθ U-Net backbone for diffusion model
E encoder of VAE in stable diffusion
D decoder of VAE in stable diffusion
τθ CLIP encoder for prompt
e∅ Text embedding for an empty string

Table 6. Notations

B. Challenges in Latent Optimization
From the main draft, we formalize our intuitive objective
function as,

min
x∗
T

d(xw
0 ,x

∗
0)− γd(xT ,x

∗
T ) (1)

Challenge 1. Huge memory consumption. To optimize
Eq. 1, the partial derivative ∂x∗

t−1

∂x∗
t

needs to be calculated
for each timestep. For instances of DDPM and DDIM, the
gradient is:
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where I is the identity matrix and ∂ϵθ(x
∗
t ,t)

∂x∗
t

is the Jaco-
bian matrix for U-Net model with respect to the input and
timestep. The coefficients (bt, wt) =

(√
αt,

1−αt√
1−αt

)
for

DDPM and
(√

αt−1

αt
,
√
1− αt

)
for DDIM.

Computing these Jacobian matrices is highly memory-
intensive. In practice, processing a single timestep for one
image requires roughly 10 GB of GPU memory. Even a
DPM solver [8] that generates images in only 10 steps, de-
mands over 100 GB, far exceeding the Hopper-100’s maxi-
mum capacity of 80 GB.

Challenge 2. Gradient estimations would result in over-
smoothing images. To reduce the memory consumption,
some researchers skip the several sampling steps via esti-
mating gradients [12]. Particularly, for a small timestep t
(see Eq.15 in [6] for detailed derivation and empirical re-
sults),

x0 ≈ 1√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
(3)

With above “shortcut”, the gradient computation be-
tween an arbitrary timestep and timestep 0 can be replaced
with a single step. However, this shortcut results in signifi-
cant quality degradation, producing over-smoothing images
as illustrated in Figure 3.

Figure 3. Preliminary: over-smoothing images and noisy images.

Challenge 3. Inducing Semantic Modifications. The core
challenge in this optimization is to find correct direction that
leads to meaningful semantic changes in images instead of
noise. Conventional adversarial attacks [4, 9, 11] operate in
image space, where imperceptible pixel-level changes are
sufficient to manipulate predicted labels. But this approach
will not work when it comes to copyrighted images, where
the content of the images are being protected. Though per-
ceptual distances [13] provide a means to measure semantic
differences, they are not directly applicable to the optimiza-
tion, particularly in latent space.

On the other hand, image interpolation and editing [1, 2,
10] using diffusion models can make smooth and control-
lable semantic modifications. But these methods require ei-
ther additional reference images or explicit editing instruc-
tions, making them inapplicable to unsupervised search set-
tings, not to mention that their ability to evade watermark-
ing remains unexplored.

As illustrated in Fig. 3, our preliminary results show that
performing adversarial search directly in latent space often
leads to noisy images with little to no meaningful semantic
modifications. This highlights the challenge of defining an
effective semantic search space, as existing methods fail to
navigate latent space in a way that preserves semantic in-
tegrity when forging replicas.
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reversed iter 0 iter 1 iter 2 iter 4 iter 8 attack

Late start, inverse latent

Late start, noisy latent

Early start, inverse latent

Early start, noisy latent

Table 7. The middle columns highlight the pixel differences between the target image (leftmost) and the attack image (rightmost) during
optimization. These illustrate how the latent gradually diverges from the anchor latent in a seamless and semantically meaningful manner.

C. Inversion and Watermark Preservation
C.1. The Inversion Formula
We refer to the interpolation technique [3] (Section F) to
inverse latent variable. The formula is,

xt+1 − xt =
√
ᾱt+1

[(√
1/ᾱt −

√
1/ᾱt+1

)
xt

+
(√

1/ᾱt+1 − 1−
√
1/ᾱt − 1

)
ϵθ(xt)

]
.

C.2. Exact Inversion is Not Necessary
We invert the latent variable from timestep 1 to T using the
above formula and record the results as anchors. These an-
chors guide further optimization, so it is desirable for them
to retain as much watermark information as possible. To
evaluate this, we reconstructed images from inverse latents
computed at different timesteps and measured the water-
mark detection rate. Our experiments show that images re-
constructed from later timesteps (i.e., when t is small) tend

to have higher watermark detection rates, indicating better
watermark preservation.

We then investigated whether exact inversion techniques
for diffusion models [7], fine-tuning the VAE with an MSE
loss, or applying regression to obtain a more accurate latent
x0 could improve watermark preservation. However, these
methods require significantly more processing time and do
not enhance the watermark detection rate. In conclusion,
exact inversion is not essential for watermark removal, and
using anchors from the basic inversion process is sufficient.

D. Invisible Watermark Removal

D.1. Noisy vs. Inverse Latents, Early vs. Late Start
We evaluate our attack pipeline against invisible water-
marks by testing all combinations of noisy versus inverse
latents and early versus late start conditions. Table 7 visu-
alize the semantic changes induced by the attack pipeline.
• Late Start, Inverse Latent ✗: Starting at a later timestep
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(i.e., t < 140) results in fewer inversion and denoising
steps. Directly denoising the inverse latent reduces global
semantic changes, as these are already addressed in ear-
lier timesteps. For example, in iterations 0 and 8, the se-
mantic changes mainly emphasize the advertisement area
on the bus.

• Late Start, Noisy Latent ✓: In contrast, beginning with
a noisy latent proves beneficial for removing invisible wa-
termarks. As shown in iteration 0, noise is uniformly dis-
tributed across the image, forcing semantic changes at all
pixel locations. Moreover, because anchors record the in-
verse latent of the watermarked images, the attack latents
diverge further from the anchors, thereby improving wa-
termark removal performance.

• Early Start, inverse latent ✓: Starting at earlier
timesteps allows the attacker to induce significant seman-
tic changes, enabling the creation of plagiarized content
even from renowned artworks and photographs (e.g., Van
Gogh’s paintings).

• Early Start, noisy latent ✗: The noise addition process
cannot apply to early start where timestep are pretty large
(t > 500). This is because when the timestep is large, the
noisy latent is almost Gaussian. Such that it is not use-
ful to extract semantic information as query in attention
units. As a result, the attack images will collapse to sim-
ple pattern, significantly deviate the original anchor and
result in meaningless outputs.

E. Failed Attempts

Besides, we list a few other failed attempts for invisible wa-
termark removal.

E.1. Artifacts from Inverse Images

As shown in Figure 4, we observed that attack images on
DctDwtSvd-watermarked images [5] tend to exhibit verti-
cal line artifacts when the inversion is performed at larger
timesteps. The DctDwtSvd method embeds watermarks by
first decomposing the image using discrete wavelet trans-
form (DWT) and then applying the discrete cosine trans-
form (DCT) on a selected sub-band. Singular value decom-
position (SVD) is then used to modify the singular values
according to the watermark bits. These modifications alter
key frequency components, which are critical to preserv-
ing the image structure. When the inversion process uses
larger timesteps (inverse from 1 to a large timestep), the
impact of these frequency alterations is amplified, leading
to visible artifacts such as vertical lines. This issue can be
mitigated by choosing smaller timesteps, while the artifacts
themselves may serve as an indicator of the underlying wa-
termarking method.

Figure 4. Images reconstructed by inverse latent from DctDwtSvd
watermarked images contain vertical line artifacts.

E.2. Add Shims on Latent Variable

In the main draft, we discuss finding alternative query, key
and value (Q′,K ′, V ′) that align with the original outputs.
This suggests that shims can be added to latent variables
only, text embeddings only, or both. However, our exper-
iments show that adding shims to latent variables often in-
troduces noise unless the hyper-parameters ε̂t are very care-
fully tuned. Therefore, in this work, we add shims only to
the text embeddings (i.e. (Q,K ′, V ′)).

E.3. Numerical Problem

Optimizing latent variables in our pipeline requires the use
of single precision (float32). To ensure optimal gener-
ation quality, we consistently use float32 for all our ex-
periments.

F. LLM Arbiter

Since GPT4-o has updated their policy not to answer IP-
related questions, we add quantitative studies with Qwen3-
235B-A22B in Table 8. This result shows how our ap-

Target t=500 t=700 t=900
Elon 16% (0.02) 32% (0.04) 59% (0.29)
Elsa 0% (0.06) 5% (0.12) 45% (0.21)

Monet 100% (0.15) 75% (0.26) 83% (0.34)

Table 8. Avg Success rate(Lpips) for 100 images. Disney IP is the
most complex one. Prompts and Qwen responses will be provided.

proach can increase success rate by introducing more se-
mantic meaningful alterations at larger timestep. Please
also note this success rate might be imprecise and subjective
as: (1) vision language models were not trained to identify
data plagiarism; (2) justification is difficult due to blurring
line of data plagiarism in legal definition and the reasoning
process with domain knowledge. For example, Qwen clas-
sified most ‘white’ replicas as Elon, even when the facial
features, such as cheek, eyes, and ears, are so different that
Elon himself would need surgery to resemble them, shown
in Figure 5 and Elon100.
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Figure 5. Disagreement when Qwen: Yes and human: No.

G. More Attack Images
G.1. Portrait Replicas for Elon Musk
To demonstrate the potential negative impact of neural pla-
giarism on copyright protection, we generated 100 portrait
replicas of Elon Musk using different random seeds. We
then employed a GPT-based verifier to assess whether these
replicas could be accurately identified as representations of
Musk. As illustrated in Figure 6, all the generated portraits
bear a strong resemblance to Musk, leading the GPT verifier
to fail in recognizing them.
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Figure 6. Who is Elon musk? Diffusion models can easily produce 100+ replicates in a few minutes.
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