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A. Training Loss
The overall loss function consists of a main loss and an aux-
iliary loss. The main loss follows the original baseline’s ob-
jective, while the auxiliary loss leverages the binary cross-
entropy (BCE) between the predicted affinity masks and the
ground truth. Taking SCCAN [5] as an example, its training
loss is defined as:

LSCCAN = Lmain + λ · Laux, (1)

Lmain = Dice(M̂q,Mq), (2)

Laux =

(
1

N

N∑
l=1

BCE(M aff
q,l,Mq)

)
. (3)

Here, Dice(·) denotes the Dice loss, M̂q is the final pre-
dicted mask, and Mq is the ground truth. The coefficient λ
is a balancing hyperparameter, empirically set to 1 follow-
ing AENet’s configuration [6]. The M aff

q,l represents the l-th
affinity mask predicted by the l-th Prototype-Guided Fea-
ture Enhancement (PFE) module, and N is the total number
of such modules (e.g., SCCAN uses 8 PFE modules).

In contrast, HDMNet adopts a different loss formulation
that includes a main loss, an auxiliary loss, and a stage-
wise distillation loss. The main loss is computed using
cross-entropy between the predicted mask and the ground-
truth annotations. The auxiliary loss is similar to SCCAN
as Equation 3. Additionally, HDMNet introduces a hi-
erarchical knowledge distillation mechanism, which pro-
gressively aligns the intermediate correlation maps across
stages. Specifically, the softmax-normalized output of a
higher-level correlation map serves as the teacher, while the
corresponding lower-level output acts as the student. For-
mally, the overall training loss for HDMNet is defined as:
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LHDMNet = Lmain + λ · Laux + LKL, (4)

Lmain = CE(M̂q,Mq), (5)

LKL =
∑
x∈X

ϕt(x) log

(
ϕt(x)

ϕs(x)

)
, (6)

where ϕt(x) and ϕs(x) denote the teacher and student out-
puts at spatial position x, respectively. To compute the di-
vergence, the teacher map is resized to match the resolution
of the student. For the final stage, which lacks a subsequent
teacher, the ground truth is used for direct supervision.

B. Experimental Evidence on Conservatism
and Aggressiveness

To further support our claim regarding the conservative of
prototype learning methods and the aggressive of affinity
learning methods, we conduct more quantitative analyses
on false positive (FP) and false negative (FN) rates across
representative models. Table 1 presents the FP and FN val-
ues of seven methods on the PASCAL-5i dataset under the
1-shot setting. Among them, SCCAN [5], HDMNet [4],
and Aff represent affinity learning approaches, while SSP
[2], HPA [1], RARE [3], and Pro correspond to prototype
learning methods. Note that Pro and Aff are the simplest
models in their respective categories. Pro is built by remov-
ing the self-supporting module from SSP, and Aff is built
from SCCAN by removing its specific designs.

As shown in Table 1, we observe that all prototype learn-
ing methods exhibit higher FN values but lower FP values
compared to affinity learning methods. This shows simi-
lar phenomena as Figure 2 in our paper, where prototype
learning methods tend to under-segment (i.e., miss fore-
ground regions) and affinity learning methods tend to over-
segment by activating background regions. These results
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Metrics SCCAN HDMNet Aff SSP HPA RARE Pro

FP 0.097 0.098 0.118 0.077 0.075 0.065 0.084
FN 0.036 0.039 0.035 0.056 0.048 0.058 0.053

Table 1. False Positive (FP) and False Negative (FN) rates of affin-
ity learning and prototype learning methods on PASCAL-5i.

Methods 50 51 52 53 Mean

HDMNet [4] (Baseline) 71.0 75.4 68.9 62.1 69.4
PAHNet (HDMNet+HPA) 72.0 75.7 70.0 66.6 71.1
PAHNet (HDMNet+RARE) 72.2 76.7 71.0 66.7 71.6

Table 2. Comparison of various prototype predictors integrated
into the PAHNet on PASCAL-5i.

provide empirical justification for the conservatism of pro-
totype learning methods and the aggressiveness of affinity
learning methods. Furthermore, the comparison between
SSP and Pro demonstrates that the conservatism is inherent
to prototype learning methods, rather than being induced by
specific design components like the self-supporting module.

To further validate the compatibility and generalizabil-
ity of our proposed hybrid framework, we integrate dif-
ferent prototype learning methods into HDMNet to form
our PAHNet. As shown in Table 2, PAHNet consistently
outperforms the HDMNet baseline across all four splits
of PASCAL-5i, regardless of the prototype predictor used.
These results indicate that our proposed PAHNet architec-
ture not only achieves a balance between conservatism and
aggressiveness, but also serves as a flexible framework that
can benefit from various prototype learning methods.

C. Additional Ablation Study
We conduct an additional series of ablation studies to in-
vestigate the impact of different components in our method
on segmentation performance. Note that the experiments in
this section are conducted with the combination of SCCAN
and BAM as the baseline on the PASCAL-5i dataset under
the 1-shot setting unless specified otherwise.
Effect of Maff

q and Mpro
q in PFE Module. We investigate

the individual and combined effects of Maff
q and Mpro

q in
our PFE module. As shown in Table 3, the baseline mIoU
starts at 68.4%. Using only Maff

q results in a slight im-
provement, with a slight performance drop on Split 2 (-
0.5%), probably due to its sensitivity to false positives. In
contrast, using only Mpro

q results in a consistent mIoU im-
provement, with an average gain of +1.3% across all splits,
benefiting from its conservative that focuses on reliable
foreground predictions. When both Maff

q and Mpro
q are

used together, the mean mIoU further increases by +1.9%,
demonstrating the complementary effect of the two predic-
tions in enhancing the final segmentation performance.
Effect of Wscore and Mscore in ASC module. We study

Maff
q Mpro

q 50 51 52 53 Mean
69.6 73.2 69.3 61.6 68.4

✓ 70.2 73.3 68.8 61.6 68.5
✓ 71.9 74.1 70.1 62.7 69.7

✓ ✓ 72.3 73.7 71.8 63.3 70.3

Table 3. Ablation study on the effect of Maff
q and Mpro

q .

Wscore Mscore 50 51 52 53 Mean
69.6 73.2 69.3 61.6 68.4

✓ 72.4 73.7 72.3 62.1 70.1
✓ 72.8 73.3 70.1 63.2 69.9

✓ ✓ 73.1 74.1 73.1 63.6 71.0

Table 4. Ablation study on the effect of Wscore and Mscore.

Method #Parameters #FLOPs
HDMNet [4] 4.2M 333.2G
HDMNet + PAHNet 4.5M 333.8G

Table 5. Impacts of PAHNet on parameters and FLOPs.

the effect of the re-weight matrix Wscore and the masking
matrix Mscore in our ASC module. As shown in Table 4,
using only Wscore increases the mIoU to 70.1%, while us-
ing only Mscore improves it to 69.9%. When both Wscore

and Mscore are applied together, the mIoU further increases
to 71.0% (+2.6%), demonstrating the effectiveness of both
components. These results confirm that Wscore and Mscore

provide complementary benefits in enhancing query feature
calibration and contribute to overall performance gains.

D. Parameter Amount and FLOPs
Our PAHNet framework is designed as a plug-and-play that
can be easily integrated into existing affinity learning meth-
ods. For example, it can be incorporated into HDMNet by
inserting three PFE and ASC modules. As shown in Ta-
ble 5, PAHNet introduces minimal overhead in both param-
eter count and computational cost. Specifically, the number
of parameters grows from 4.2M to 4.5M , and the FLOPs
increase slightly from 333.2G to 333.8G, demonstrating the
efficiency and lightweight design of our approach.

E. Additional Qualitative Results
Qualitative Analysis of Component Modules. As visual-
ized in Fig. 2, the two modules exhibit distinct yet comple-
mentary behaviors. The PFE enforces foreground consis-
tency by enhancing the foreground features of support and
query, which is reflected in the expanded foreground activa-
tion coverage seen in the Class Activation Maps (CAMs).
In contrast, the ASC focuses on suppressing background



interference through spatial reweighting of attention scores,
resulting in cleaner activation boundaries and fewer back-
ground artifacts in the CAM visualizations. While both
modules improve baseline performance, the results driven
by the second module show superior segmentation preci-
sion because of its explicit FG-BG decoupling, especially
in complex scenes. These observations align well with the
design intent: the PFE enhances the foreground features,
while the ASC suppresses the FG-BG feature mismatch.
Qualitative Analysis of Maff

q and Mpro
q . Further quali-

tative results are provided in Fig. 3 to illustrate the effec-
tiveness of the Maff

q and Mpro
q . The figure presents CAMs

and segmentation perditions under three different settings:
using only affinity predictions (Maff

q ), only prototype pre-
dictions (Mpro

q ), and their combined fusion. When relying
solely on affinity predictions, over-activation in background
regions occurs (notably in rows 5 and 6), leading to more
false positives in segmentation. By contrast, using only pro-
totype predictions results in less activation of foreground re-
gions (rows 3 and 4), causing incomplete object coverage.
Importantly, the combined use of both predictions balances
these issues, the prototype predictions constrain affinity at-
tention to semantically coherent foreground areas (rows 7
and 8), achieving both precise localization and full object
coverage. This empirical evidence confirms that the effect
between conservative prototype guidance affinity learning
effectively reduces both false positive and false negative er-
rors, achieving a better balance in few-shot segmentation

Figure 1. Representative failure cases of PAHNet.

F. Limitation and Future Direction
Despite the effectiveness of our proposed PAHNet frame-
work, there remain several limitations that merit discus-
sion. We illustrate several representative failure cases in
Figure 1, where the segmentation results are notably lim-
ited by the underestimation of the foreground scope during
the prototype prediction stage. The quality of the proto-
type mask plays a critical role in guiding the subsequent
affinity learning module. In complex scenes with large
intra-class variations or occlusions, the prototype predic-

tor (e.g., SSP) may generate overly conservative foreground
masks. These narrow foreground regions impose overly
strong spatial constraints on affinity learning, which in turn
hinders the model’s ability to recover the complete object
area. As a result, the affinity module may fail to propagate
semantic cues to the entire foreground, leading to incom-
plete segmentation. Addressing these limitations in future
work may involve enhancing the prototype module’s robust-
ness to complex scenes, incorporating uncertainty model-
ing, or enabling iterative refinement between the prototype
and affinity modules.
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Figure 2. Additional visualization results of CAMs and segmentation perditions on PASCAL-5i under 1-shot setting. The first and second
rows show examples of the support images with ground truth in blue and the query images with labeled masks in green, respectively.
The following rows present CAMs from the last stage along with the corresponding prediction results for the baseline model, the baseline
enhanced with Prototype-Guided Feature Enhancement (PFE), and the baseline augmented with Attention Score Calibration (ASC). CAMs
are visualized as heatmaps to highlight the activation differences across settings.
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Figure 3. Additional visualization results of CAMs and segmentation predictions on PASCAL-5i under the 1-shot setting. The first and
second rows show support images with ground truth masks in blue and query images with labeled masks in green, respectively. The
following rows present CAMs from the last stage and corresponding prediction results under three configurations: using only Maff

q , only
Mpro

q , and the combination of both. CAMs are visualized as heatmaps to highlight the activation differences across settings.
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