
Supplementary Materials to “Dataset Distillation

via Vision-Language Category Prototype”

The supplementary material is organized as follows:

Section 1 provides detailed related works; Section 2

presents the implementation details of generating textual

descriptions using the LLaVA model used in this paper;

Section 3 shows the details of diffusion model training; Sec-

tion 4 presents implementation details of outlier removal

and image prototypes; Section 5 presents more analysis and

discussion; Section 6 provides detailed settings of hyper-

parameters; and finally, Section 7 presents generated sam-

ples of different datasets.

1. Related Works

1.1. Dataset Distillation

DD aims to synthesize information-dense, small datasets

that effectively serve as alternatives to large-scale datasets

for downstream tasks such as classification [6, 23], achiev-

ing performance comparable to that of the original data

[20, 24]. Previous methods for DD primarily include meta-

learning based and matching based frameworks [8]. In

meta-learning based method, distilled data are optimized as

hyperparameters within a bi-level framework, where syn-

thetic data are iteratively updated in an outer loop by min-

imizing the meta-test loss on the real dataset, while an in-

ner loop concurrently trains the model on the synthetic data

[14, 20, 28]. Meta-learning methods are categorized into

two sub-categories based on inner-loop optimization: back-

propagation through time [2, 17, 20] and kernel ridge re-

gression [13, 14] approach.

In contrast to the previously outlined meta-learning

method, matching based methods refine distilled images via

parameter matching and distribution matching [3]. Specif-

ically, parameter matching focuses on aligning model pa-

rameters of the original dataset and synthetic dataset, both

of which are trained based on the same network architec-

ture. Zhao et al. [25] first proposed this approach to dis-

tilled images by matching the gradients computed on the

synthetic dataset and real data, which is further developed

through the following studies [1, 7]. Unlike encouraging

the consistency of trained neural parameters, distribution

matching approaches directly align the distribution of syn-

thetic and real images in the feature space to closely ap-

proximate the real data. For instance, distribution matching

minimizes the divergence between the two distributions by

employing Maximum Mean Discrepancy (MMD) [27] met-

rics and is further extended by CAFE [19].

Though the methods mentioned above have achieved sig-

nificant progress in dataset distillation, generating synthetic

datasets often requires high computational costs, and the

time involved increases rapidly with large-scale datasets.

For instance, MTT distills images with IPC 50 on CIFAR10,

requiring 47GB of GPU memory, making it impractical for

large-scale datasets like ImageNet-1K [24]. Hence, several

studies have leveraged generative models [4, 16] in dataset

distillation to optimize latent features instead of image pix-

els, thereby achieving a faster training process and enhanc-

ing performance. For instance, IT-GAN [26] employs pre-

trained GAN as an informative training sample generator,

which only needs to optimize latent features rather than im-

age pixels. Su et al. [16] integrated the diffusion model

into DD to obtain embedding features, after which K-means

clustering is applied to each class. The cluster centers then

serve as prototypes and, along with label texts, are fed into

the diffusion model for image generation. However, ex-

isting diffusion models for dataset distillation often pro-

duce unrealistic images or images with absent target objects

and exhibit co-occurrence bias. Our study overcomes these

challenges by integrating text descriptions, enhancing logi-

cal coherence, and mitigating bias.

1.2. Vision-Language

Vision-Language (VL) is a multimodal learning approach

that enables models to process and understand both vi-

sual (e.g., images and videos) and language (e.g., text

and speech) information simultaneously, allowing for cross-

modal understanding and reasoning beyond traditional uni-

modal models. Most multimodal methods project images

and text into a shared embedding space, enabling the mea-

surement of similarities between learned representations

across diverse modalities, such as CLIP [15], BLIP [9]

ALIGN [5]. These methods are foundational in enabling

robust image-text alignment. Recent studies have extended

these methods to multimodal dataset distillation. For in-

stance, Wu et al. [21] leverage low-rank adaptation to match
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bi-trajectory in complex modern vision-language models.

Similarly, Xu et al. [22] distill a ground truth similarity

matrix from image-text pairs and employ low-rank factor-

ization to improve efficiency and scalability. However, the

absence of paired text in most datasets makes it challeng-

ing to apply the aforementioned methods, as they require

multimodal alignment to achieve effective distillation.

To address this limitation, our method generates paired

text for unimodal data via LLaVA [10–12] and integrates

text prototypes with image prototypes to facilitate dataset

distillation. This approach addresses the limitation of miss-

ing text in unimodal datasets while enabling flexible and

scalable dataset distillation. Unlike prior methods [21, 22],

which rely on image-text paired data for multimodal align-

ment, our approach is specifically tailored for datasets with-

out textual annotations. By generating paired text and intro-

ducing text prototypes, our method achieves alignment be-

tween visual and textual information at the prototype level,

creating a unified representation that improves the effective-

ness of the distillation process. This innovation demon-

strates the high adaptability of our approach to a broader

range of datasets compared to existing methods.

2. Implementation of Generating Textual De-

scriptions Using the LLaVA Model

In this study, we employ the LLaVA model

(liuhaotian/llava-v1.5-7b) [10–12] to generate textual

descriptions for visual inputs. The model is run under

default configurations, including a sampling temperature of

0.2 and a beam search with a single beam (num beams=1).

The generated textual descriptions are systematically stored

for downstream analysis. All datasets follow a standardized

prompt format to guide the model in generating the textual

descriptions:

Prompt = “Describe the physical appearance of the

{$CLASSNAME} in the image. Include details about its

shape, posture, color, and any distinct features.”

Below is a sample of an English Springer Spaniel, along

with the corresponding description generated by the model:

Description = “The English springer spaniel in the image

is a small, white and brown dog with a short, curly coat. It

has a distinctive shape, with a long body and a curved tail.

The dog appears to be in a relaxed posture, walking through

the grass with its tongue out, which is a common behav-

ior for dogs when they are enjoying themselves or feeling

comfortable. The dog’s coloration is predominantly white

with brown markings, which is a common characteristic of

English springer spaniels.”

The generated textual descriptions adhere to the stan-

dardized prompt, providing detailed accounts of the object’s

shape, posture, color, and distinct features. These descrip-

tions go beyond the visual content of the image, offering

Figure 1. A sample of an English Springer Spaniel.

additional information not immediately apparent. By pro-

viding such comprehensive and nuanced details, the textual

descriptions contribute valuable insights that cannot be cap-

tured by conventional image prototypes, thereby enriching

the depth of the analysis.

3. Diffusion Model Training

In this study, we fine-tune the benjamin-paine/stable-

diffusion-v1-5 model using paired image-text datasets gen-

erated by LLaVA. To ensure robustness and model gen-

eralization, each dataset is trained with three distinct ran-

dom seeds, resulting in three independently fine-tuned dif-

fusion models per dataset. All datasets are trained accord-

ing to the parameters specified in Table 1, except for the

input resolution: 512 for ImageNet-1K and its subsets (Im-

ageWoof, ImageNette, ImageIDC, ImageNet-100), 32 for

CIFAR-10/100, and 64 for Tiny-ImageNet.

Settings Values

train batch size 8

validation epochs 2

number of training epochs 8

learning rate 1.0e-05

Adam weight decay 0.01

augmentation center crop, random flip

Table 1. Diffusion model training settings.

4. Outlier Removal and Image Prototypes

In contrast to other outlier detection methods, the Local

Outlier Factor (LOF) is an unsupervised algorithm that

does not require labeled data, making it particularly suit-

able for detecting anomalies in datasets with complex or

unknown structures. LOF assesses the local density of

data points to identify instances that significantly deviate

from their surrounding neighbors. For the LOF algorithm,

two parameters are configured: the number of neighbors



(a) (b)

Figure 2. T-SNE visualizations of the bonnet class from ImageIDC. (a) Cluster centers obtained from K-means clustering on the original

data. (b) Cluster centers after applying Local Outlier Factor (LOF) to remove outliers, followed by K-means clustering.

(n neighbors = 10) is consistently applied across all

datasets to maintain uniformity in local density estimation,

while the contamination parameter is adjusted according to

the specific characteristics of each dataset—set to 0.0 for

ImageWoof, 0.1 for ImageIDC, 0.01 for ImageNette, and

0.1 for ImageNet-100.

As shown in Fig. 2, outlier removal improves clustering

performance. In the original dataset (Fig. 2-(a)), K-means

clustering resulted in several cluster centers being densely

concentrated in specific regions, indicating poor cluster sep-

aration and potential overlap among clusters. This outcome

suggests that the presence of outliers adversely affected the

clustering process, leading to suboptimal partitioning of

the data. However, after applying LOF to eliminate out-

liers (Fig. 2-(b)), the cluster centers appeared more dis-

tinctly separated and uniformly distributed across the fea-

ture space. This clearer separation reflects a more accurate

representation of the underlying data structure, allowing K-

means to perform more effectively.

Following outlier removal, K-means clustering is applied

to each class individually, with the resulting cluster cen-

ters designated as image prototypes. The clustering process

is configured with random state set to the correspond-

ing seed for reproducibility, n init = 10 to ensure sta-

bility in clustering outcomes, and the number of clusters

(n clusters) determined by the images-per-class (IPC) set-

ting. Specifically, when IPC = 10, the number of clusters is

set to 10. This approach ensures that the prototypes effec-

tively capture the representative features of each class after

noise reduction.

5. More Analysis and Discussion

ImageNet-100 Beyond the previously mentioned 10-class

ImageNet subsets, we also conduct experiments on the more

challenging ImageNet-100, with the results presented in Ta-

ble 2. This table provides a detailed performance analy-

sis of state-of-the-art methods, including Random, Herding,

IDC-1, Minimax, D4M, and our proposed approach (Ours),

across various model architectures and IPC settings. To en-

sure a fair comparison across methods, all images are re-

sized to 256 × 256. Although IDC-1 achieves the best per-

formance at IPC = 10, our method outperforms IDC-1 at

IPC = 20. Moreover, our approach consistently surpasses

Minimax under both IPC = 10 and IPC = 20 settings.

IPC Test Model Random Herding IDC-1 Minimax D4M Ours

10

ConvNet-6 17.0±0.3 17.2±0.3 24.3±0.5 20.1±0.3 18.5±0.8 22.3±0.2

ResNetAP-10 19.1±0.4 19.8±0.3 25.7±0.1 21.5±0.3 20.0±0.4 24.5±0.1

ResNet-18 17.5±0.5 16.1±0.2 25.1±0.2 20.1±0.9 18.5±1.2 23.3±0.5

20

ConvNet-6 24.8±0.2 24.3±0.4 28.8±0.3 25.9±0.4 25.0±0.6 29.3±0.6

ResNetAP-10 26.7±0.5 27.6±0.1 29.9±0.2 27.0±0.4 27.3±0.6 32.3±0.6

ResNet-18 25.5±0.3 24.7±0.1 30.2±0.2 26.4±0.3 26.6±0.6 31.5±1.1

Table 2. Comparison of state-of-the-art methods on ImageNet-

100 under various IPC settings and model architectures. The best

results are marked as bold, and the second-best are underlined.

Tiny-ImageNet We evaluate our method on the Tiny-

ImageNet dataset consisting of 200 classes, each contain-

ing 500 training images at 64 × 64 pixels. Table 3 presents

the performance of different methods under IPC values, fol-

lowing the validation protocol of RDED [18]. When IPC =

10, our method achieves an accuracy of 42.6%, slightly sur-

passing RDED (41.9%), while SRe2L exhibits significantly

lower performance (16.1%). At IPC = 50, RDED reaches

the highest accuracy (58.2%), whereas our method achieves

55.5%, outperforming SRe2L (41.1%). These results indi-

cate that our approach is competitive in low IPC but has

room for improvement as IPC increases.

6. Hyper-Parameters Settings

In addition to the parameters α (Contamination), β (Non-

representative Threshold), and k (Topk words) used in the

generation of text prototypes, the diffusion model with text



Dataset IPC SRe2L RDED Ours

Tiny-ImageNet
10 16.1±0.2 41.9±0.2 42.6±0.2

50 41.1±0.4 58.2±0.1 55.5±0.6

Table 3. Comparison of state-of-the-art methods on Tiny-

ImageNet under various IPC settings.

prompts involves two hyperparameters: strength (0 < s <

1) and guidance scale (g > 1). Strength controls the de-

gree of modification applied to the input image based on the

text prompt, with lower values resulting in minimal modi-

fication, preserving the original image, and higher values

leading to a stronger alignment with the prompt. Guidance

scale determines the extent to which the model adheres to

the text prompt during image generation. Lower values en-

courage more diverse outputs, while higher values enforce

stricter alignment with the prompt.

For a fair comparison, ImageWoof, ImageNette, Im-

ageIDC, and ImageNet-100 are evaluated using the Min-

imax valuation method at a synthetic image resolution of

256×256, as shown in Table 4. Additionally, apart from

ImageWoof and ImageNet-100, which is evaluated on three

widely used network architectures (ConvNet-6, ResNetAP-

10, and ResNet-18), the remaining datasets (ImageNette

and ImageIDC) are assessed only on ResNetAP-10.

Settings Values

contamination 0.0/0.01/0.1/0.1

nonrepresentative threshold 0.7

topk words 30

guidance scale 10

strength 0.7

synthetic image size 256

valuation method Minimax

Table 4. Parameter settings of ImageWoof, ImageNette,

ImageNet-100, and ImageIDC.

For ImageNet-1K, hyperparameters are provided in Ta-

ble 5. All synthetic images are resized to 224 × 224, fol-

lowing the validation protocol of RDED with the ResNet-18

architecture.

For CIFAR10/CIFAR100, hyperparameters are summa-

rized in Table 6. All synthetic images are resized to 32 × 32,

following the validation protocol of RDED with the modi-

fied ResNet-18 architecture.

For Tiny-ImageNet, hyperparameters are outlined in Ta-

ble 7. All synthetic images are resized to 64 × 64, following

the validation protocol of RDED with the modified ResNet-

18 architecture.

Settings Values

contamination 0.0

nonrepresentative threshold 0.7

topk words 30

guidance scale 10

strength 0.7

synthetic image size 224

valuation method RDED

Table 5. Parameter settings of ImageNet-1K.

Settings Values

contamination 0.0

nonrepresentative threshold 0.8/0.2

topk words 30

guidance scale 10

strength 0.7

synthetic image size 32

valuation method RDED

Table 6. Parameter settings of CIFAR10/CIFAR100.

Settings Values

contamination 0.0

nonrepresentative threshold 0.7

topk words 30

guidance scale 10

strength 0.7

synthetic image size 64

valuation method RDED

Table 7. Parameter settings of Tiny-ImageNet.

7. Generated Samples of Different Datasets

Additional visualizations of the distilled data generated by

our method are presented in the following figures: CIFAR-

10 (Fig. 3), CIFAR-100 (Fig. 4), Tiny-ImageNet (Figs.

5–6), and Imagenet-1k (Figs. 7–16).

Figure 3. Synthetic images (32 × 32) selected from the distilled

CIFAR-10 (Class 0-9).



Figure 4. Synthetic images (32 × 32) selected from the distilled CIFAR-100 (Class 0-99)

Figure 5. Synthetic images (64 × 64) selected from the distilled Tiny-ImageNet (Class 0-99).



Figure 6. Synthetic images (64 × 64) selected from the distilled Tiny-ImageNet (Class 100-199).



Figure 7. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 0-99).



Figure 8. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 100-199).



Figure 9. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 200-299).



Figure 10. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 300-399).



Figure 11. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 400-499).



Figure 12. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 500-599).



Figure 13. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 600-699).



Figure 14. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 700-799).



Figure 15. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 800-899).



Figure 16. Synthetic images (224 × 224) selected from the distilled Imagenet-1k (Class 900-999).
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