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A. Dataset Details
As shown in Tab. 1, we provide comprehensive and detailed
descriptions of all the datasets used in this paper.

LoveDA [12] The LoveDA dataset is a fine-resolution
0.3m dataset designed for urban and rural land cover clas-
sification. It consists of 5,987 images, each with a resolu-
tion of 512 × 512 pixels. Captured in three cities—Nanjing,
Changzhou, and Wuhan, China—LoveDA spans both urban
and rural environments. The metropolitan region contains
dense infrastructure and complex geometries, while the ru-
ral area features natural landscapes and sparse settlements.
This diversity in geographic environments provides valu-
able data for assessing the adaptability and generalizability
of segmentation models. The dataset’s varied land cover
improves its versatility for real-world segmentation tasks.

UAVid [10] The UAVid dataset is a high-resolution
dataset for semantic segmentation tasks in urban environ-
ments. It was captured by an unmanned aerial vehicle
(UAV) flying at an altitude of 50 meters and consists of 42
video sequences and 420 images. The images are available
in two spatial resolutions: 3,840 × 2,160 and 4,096 × 2,160
pixels. The dataset includes a diverse range of urban ob-
jects, such as buildings, roads, trees, vegetation, vehicles,
humans, and other urban clutter. Both top-down and side
views of urban scenes are provided, offering a comprehen-
sive perspective for object recognition. In training stage,
each image is divided into patches of 1,024 × 1,024 pixels.

Potsdam [2] The ISPRS Potsdam dataset consists of 38
drone images from Potsdam, Germany, each with a reso-
lution of 6000 × 6000 pixels and a ground sampling dis-
tance (GSD) of 5 cm, designed for semantic segmentation
in urban environments. This dataset is annotated into six
categories: impervious surfaces, buildings, low vegetation,
trees, cars, and clutter. For the experiments, the images
were cropped into 1,024 × 1,024-pixel patches to ensure
manageable data processing and to focus on the primary
RGB images and their corresponding labels.

Vaihingen [3] The ISPRS Vaihingen dataset includes 33
high-resolution images, each with a pixel resolution of 0.5
m, covering an urban region in Vaihingen, Germany. The
images are classified into six categories: impervious sur-
faces, buildings, low vegetation, trees, cars, and clutter.
The dataset’s average image size is 2,494 × 2,064 pixels.

For segmentation experiments, we used only the RGB im-
ages, and each image was divided into 1,024 × 1,024-pixel
patches to facilitate efficient model training and testing.

Cloud [1] The Fine-Grained Cloud Segmentation dataset
consists of 96 terrain-corrected (Level-1T) scenes from
Landsat 8 OLI and TIRS, covering various biomes. This di-
verse dataset supports cloud detection and removal tasks in
complex environments, offering pixel-level annotations for
cloud shadow, clear sky, thin clouds, and cloud areas. Each
scene is divided into 512 × 512-pixel patches and organized
into training, validation, and test sets in a 6:2:2 ratio. The
dataset’s wide range of cloud cover types and biomes makes
it a valuable resource for training and evaluating segmenta-
tion models in cloud detection tasks.

Grass [14] This dataset was developed to overcome the
limitations of existing grassland segmentation datasets,
such as boundary ambiguity and misclassification in com-
plex terrains. Created using high-resolution satellite im-
agery from Gaofen-2 and Gaofen-6, it was captured in 2019
over Maduo County, located in the Yellow River source
area of China. The dataset includes high-resolution im-
ages (8m) and provides detailed grassland coverage clas-
sifications across five levels: low coverage, medium-low
coverage, medium coverage, medium-high coverage, and
high coverage. It consists of 1,500 pairs of 256 × 256-pixel
patches, with manual refinement to ensure high accuracy.
This dataset is especially valuable for fine-grained grassland
extraction in high-altitude, ecologically sensitive regions.

B. Evaluation Metrics

Overall Accuracy (OA) calculates the ratio of correct
predictions to the total number of pixels:

OA =

∑
i TPi∑

i(TPi + FPi + FNi)
, (1)

where TPi, FPi, and FNi represent true positives, false
positives, and false negatives for the i-th class, respectively.

Intersection over Union (IoU) measures the overlap be-
tween predicted and ground truth regions for a class. Mean
IoU (mIoU) averages the IoU scores across all classes.

IoU =
TP

TP + FP + FN
, (2)



Table 1. Overview of remote sensing image datasets for semantic segmentation.

Type Dataset Source GSD*,† Patch Size Category

Coarse Grained

LoveDA [12] Satellite 0.3m 1024 * 1024 background, building, road, water,
barren, forest, agriculture

UAvid [10] UAV 50m† 1024 * 1024 clutter, building, road, tree, low
vegetation, moving car, static car,
human

Potsdam [2] UAV 5cm 1024 * 1024 impervious surface, building, low
vegetation, tree, car, clutter

Vaihingen [3] UAV 9cm 1024 * 1024 impervious surface, building, low
vegetation, tree, car, clutter

Fine Grained

Cloud [1] Satellite 30m 512 * 512 cloud shadow, clear sky, thin cloud,
thick cloud

Grass [14] Satellite 8m 256 * 256 low, medium-low, medium,
medium-high, high

* GSD (Ground Sampling Distance): The physical pixel size projected onto the ground surface (e.g., 0.3m/pixel = each pixel represents a 0.3×0.3m ground
area). Smaller GSD indicates higher spatial resolution.
† For UAVid dataset: The value indicates flight altitude rather than actual GSD. True GSD can be calculated via camera parameters.

mIoU =
1

N

N∑
i=1

IoUi, (3)

where N is the number of classes, and IoUi is the IoU for
the i-th class.

F1 balances precision and recall, providing a harmonic
mean of the two. Mean F1 score (mF1) averages the F1.

F1 = 2 · Precision · Recall
Precision + Recall

, (4)

mF1 =
1

N

N∑
i=1

F1i, (5)

where Precision = TP
TP+FP and Recall = TP

TP+FN . F1i
balances precision and recall for the i-th class.

While OA provides a general performance measure, it is
less reliable for imbalanced datasets. In contrast, IoU and
F1 score (and their mean versions, mIoU and mF1) offer
more robust evaluations by considering class-level perfor-
mance, making them better suited for multi-class tasks.

C. Ablation Study
Dimensions of Class ID Embedding We analyzed the
impact of class ID embedding dimensions on segmenta-
tion performance. As shown in Fig. 1, increasing dimen-
sions from 64 to 256 boosts performance across all datasets.
While 512 dimensions achieve peak results on UAVid and
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Figure 1. Performance comparison across different class ID em-
bedding sizes for Cloud, UAVid, and LoveDA datasets. The mIoU
scores are shown for embedding sizes ranging from 64 to 1024.

Cloud, LoveDA slightly degrades, suggesting dimension
sensitivity varies with dataset complexity. Extreme dimen-
sions (1024) caused performance collapse, indicating over-
fitting risks. Therefore, we select 256 as the default value
for achieving optimal efficiency-discriminability trade-off.

Backbone in Encoder We evaluate the impact of dif-
ferent backbone architectures on segmentation perfor-



Table 2. Performance comparison of different backbones under
frozen and fully-trained settings on the LoveDA dataset.

Backbone Status mIoU ↑

ConvNeXt (B) [9] Frozen 48.50
Full 55.27

Swin (B) [7] Frozen 49.76
Full 53.88

Swinv2 (B) [8] Frozen 48.43
Full 54.41

MobileNetv3 (L) [5] Frozen 46.34
Full 51.17

EfficientNet (M) [11] Frozen 44.93
Full 53.78

Table 3. Computational efficiency comparison with input size
512×512, including * indicates parameters without backbone.

Method Params (M) Params* (M) Flops (G)

AerialFormer [4] 113.8 26.9 126.8
SFA-Net [6] 10.7 0.6 7.1
KTDA [14] 258.3 170.7 566.4
Ours 90.9 3.3 89.2

mance under frozen and fully trained settings using the
LoveDA [12] dataset, as shown in Tab. 2. Among the
tested backbones, Swin (B) achieves the highest mIoU of
49.76% in the frozen setting, while ConvNeXt (B) out-
performs others with 55.27% when fully trained, demon-
strating its superior feature extraction capability when fine-
tuned. Swinv2 (B) and Swin (B) exhibit comparable per-
formance, with Swinv2 (B) slightly behind in both settings.
MobileNetv3 (L) and EfficientNet (M), being lightweight
backbones, yield lower mIoU scores, particularly in the
frozen setting, indicating their limited capacity to generalize
without fine-tuning. These results suggest that transformer-
based backbones generally perform better than CNN-based
alternatives, and that full training significantly boosts seg-
mentation performance across all architectures.

D. Computational Efficiency

As shown in Tab. 3, our method achieves a substantial
efficiency-performance tradeoff. Excluding the backbone, it
has only 3.3M parameters, remaining lightweight. Though
SFA-Net [6] has fewer FLOPs, its minimal parameters limit
representation capacity. Remarkably, our model achieves
significant performance improvements with fewer parame-
ters than both AerialFormer [4] and KTDA [14].

E. More Visualization

Figs. 3 and 4 present comparative visualization results of
our method against SFA-Net [6] and UNetFormer [13]
across six challenging benchmarks. On the LoveDA
(Fig. 3a) and UAVid (Fig. 3b) datasets where test set ground
truth is unavailable, our segmentation masks exhibit supe-
rior alignment with visual semantics compared to baselines,
particularly in preserving structural continuity of buildings
and road networks. The Potsdam (Fig. 3c) and Vaihingen
(Fig. 3d) results demonstrate our model’s robustness against
complex urban patterns, with significantly reduced segmen-
tation artifacts in cluttered areas. Cloud (Fig. 4a) and Grass
(Fig. 4b) segmentation further validate our approach’s ca-
pability to handle fine-grained texture variations, achieving
state-of-the-art boundary precision. A failure mode analy-
sis (Fig. 5) reveals that tiling artifacts persist in UAVid in-
ference due to our sliding window strategy, suggesting di-
rections for future architectural improvements.

F. Training Dynamics

In this section, we present the curves showing how the met-
rics of our method and SFA-Net [6] change with the training
epochs. By comparing the performance across various as-
pects, we highlight the advantages of our method.

Training Stability As shown in Fig. 2b and Fig. 2f,
our method demonstrates superior stability during training.
Compared to SFA-Net, our approach exhibits minimal fluc-
tuations and maintains a steady convergence throughout the
training process, which reduces the need for extensive hy-
perparameter tuning, saving computational resources.

Fitting Speed Fig. 2a and Fig. 2e illustrate the faster fit-
ting speed of our method. Our model achieves optimal per-
formance in fewer epochs, while SFA-Net requires more
training time to reach similar results. This faster conver-
gence enables more efficient model training.

Final Performance Fig. 2 holistically demonstrates our
method’s superiority across all evaluation metrics (subfig-
ures a.-f.). The consistent performance advantages visible
throughout the training lifecycle – from initial convergence
patterns to final stabilized outputs – validate our approach’s
end-to-end effectiveness.
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Figure 2. Validation set mIoU trends across all datasets over training epochs.
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Figure 3. More visualization results of coarse-grained remote sensing images.
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Figure 4. More visualization results of fine-grained remote sensing images.
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Figure 5. Visualization examples of bad cases.
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