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A. Comparison with Additional Generalizable
DC Baselines

The codes are not available for some of the generalizable
DC baselines [7, 22], so we are only able to compare against
them on NYU and KITTIL.

While all termed “generalizable”, previous works focus
on more restricted settings (TTADC and UniDC on label-
free / few-shot domain adaptation; SpAgNet and Depth-
Prompting on generalization across sparsity), in contrast to
the most challenging zero-shot, sensor-agnostic setting of
our paper. As shown in Tab. a, ours (zero-shot) works even
better than UniDC tested on the easier 100-shot setting. On
NYU, ours even outperform fully-supervised SpAgNet.

Table a. Numbers are copied from original papers when possible.
Metric is RMSE. Ours works best under the generalizable settings
(i.e., TTA/100-shot/zero-shot) on both datasets and across densi-
ties (64Lines & 8Lines on KITTI).

Methods Setting NYU-500P KITTI-64L KITTI-SL
DPrompting [23] Fully 0.105 1.086 1.642
SpAgNet [7] < -y 1 0.114 0.845 2.691
VPP4DC [1] PUpervisee 0.117 0.099 -
TTADC [21] _ Test-Time Adapt. _ 0.204 - -
UniDC [22] 0.147 1224 2.890
Drompting [23] 100-Shot 0.175 1275 4.587
UniDC [22] 0.323 4,061 -
VPP4DC [1] Zero-Shot 0.247 1.609 -
Ours 0.111 1.191 2.058

B. Ablation Studies on Training Data

We show two things here: 1) Mixing real-world data for
training harms performance, both qualitatively and quan-
titatively. 2) When using the same training datasets, our
method still works better than baselines (i.e., OGNIDC [42]
and CompletionFormer [41]).

We train OMNI-DC and baselines on either fully syn-
thetic data, or synthetic+NYUv2. As shown in Fig. a, syn-
thetic+real training produces blurry results, as NYU labels
from Kinect are blurry. Compared to fully synthetic train-
ing, mixing NYU for training results in worse RMSE for

zero-shot testing on most (6/8) of the datasets, as shown in
Tab. c. Nevertheless, ours is still better than baselines when
trained on synthetic+real (RMSE reduced by 29.2% from
OGNI-DC and by 36.1% from CFormer on KITTI).

Synthetic Only Training

Synthetic + NYU Training

Figure a. Mixing NYU for training produces blurry depth maps on
iBims [14].

C. Results on Radar Depth Completion

To show that OMNI-DC can generalize beyond the sparse
depth patterns that it was trained on, we evaluate on the
Radar-Camera fusion benchmark, ZJU-4DRadarCam [15].
As shown in Tab. b, ours outperforms all zero-shot base-
lines. While baselines such as G2-MD also claim to be
generalizable, they perform much worse. As shown in
Fig. b, while our metrics slightly fall behind RadarCam-
Depth (which is trained in-domain and not zero-shot), our
depth map is much sharper. Sharpness is crucial for novel
view synthesis applications to avoid boundary artifacts.

Table b. We follow [15] and test with three ranges. Numbers in
gray are trained on ZJU-4DRadarCam and are not zero-shot; oth-
ers are zero-shot. Ours outperforms all other zero-shot methods,
though it falls behind methods trained in-domain.

50m 70m 80m
GT-ranges
RMSE| iRMSE| RMSE| iRMSE| RMSE| iRMSE|
DORN [17] 4129.7 31.853 4625.2 31.877 4760.0 31.879

Singh et al. [29] 3704.6 35342 4137.1 35.166 4309.3 35.133
RadarCam [15] 2817.4 22936 3117.7 22853 3229.0 22.838

DA-v2 [40] 5466.5 47.446 62613 47.118 6566.9 47.053
OGNI-DC [42] 7612.7 29107.2 8151.2 28800.5 8356.9 28739.0
G2-MD [34] 7237.2 61.285 7980.3 60.803 82323 60.717
Ours 5256.8 41.477 5984.1 41.253 6249.1 41.207




Table c. Ablation studies on the effect of mixing real-world dataset for training. NYU consists of 1/6 of all data. All models are trained
with 1/10 of the full training steps, due to resource constraints. The metric is RMSE, and the sparse depth has 0.7% density except for
NYU, VOID, and KITTI. Mixing real training data has a negative effect on most of the datasets, especially obvious outdoor. Ours works

better than OGNI-DC and CFormer under both training settings.

Zero-Shot, Indoors

Zero-Shot, Outdoors

NYU-500P iBims ETH3D(In) DIODE(In) ARKitScenes VOID-1500P ETH3D(Out) DIODE(Out) KITTI-64L

In-Domain

Training

OMNI-DC, Synthetic Only (Ours) 0.119 0.156 0.118 0.056
OMNI-DC, Synthetic + NYU 0.110 0.156 0.119 0.058
OGNI-DC [42], Synthetic Only 0.125 0.164 0.124 0.063
OGNI-DC [42], Synthetic + NYU 0.120 0.166 0.127 0.064
CFormer [41], Synthetic Only 0.130 0.176 0.148 0.064
CFormer [41], Synthetic + NYU 0.128 0.173 0.148 0.066

0.023 0.565 0.322 2.307 1.279
0.022 0.567 0.324 2.337 1.309
0.024 0.573 0.333 2.332 1.846
0.023 0.595 0.337 2.411 1.850
0.030 0.595 0.359 2.338 2.037
0.025 0.627 0.388 2.382 2.047

Table d. Our method is robust under challenging imaging conditions (e.g., nighttime and different weathers).

Carla-Night-DC [38]

DS-Sunny [39]

DS-Rainy [39]

DS-Foggy [39]

DS-Cloudy [39]

Datasets

RMSE, MAE| iRMSE| iMAE] RMSE| MAE| RMSE, MAE| RMSE] MAE| RMSE| MAE|
LDCNet [38] 7214 2014 0.0546  0.0156 - - - - - - B -
DA-v2 [40] 104.878  68.242 0.1560 0.0976 7.544 2.941 7.567 3.805 7.868 2.927 8.252 2.964
OGNI-DC [42] 13.576 5.469 0.2191 0.0738 3.774 1.494 5.730 2.384 3.756 1.654 3.903 1.499
G2-MD [34] 10.488 3.291 0.0930 0.0246 3.013 0.875 2.809 0.982 3.130 1.149 3.053 0.872
Ours 10.068 2.523 0.0413 0.0105 2.765 0.741 2.645 0.844 2.744 0.909 2.735 0.714

E. Details on Novel View Synthesis

RGB . .

Input In the main paper, we have shown a practical downstream
application of OMNI-DC on novel view synthesis. Train-
ing neural rendering frameworks such as NeRF [19] or
3DGS [12] on sparse input views is a challenging task, and

Ours introducing geometric priors such as depth as a regulariza-
tion has been shown helpful in previous works [6, 8]. We
follow the recent work DN-Splatter [31], and use a depth
loss to train 3DGS. The loss can be written as:

RadarCam

-Depth

Figure b. Results on the Radar depth completion task. Our depth
maps are much sharper than RadarCam-Depth [15].

D. Robustness to Night Time and Bad Weather

As shown in Tab. d, our method is robust.

Carla-Night-DC [38] contains night-time driving scenes.
LDCNet [38] is trained on Carla-Night-DC and other meth-
ods are tested zero-shot. Our method works the best, even
outperforming LDCNet on iRMSE and iMAE despite never
being trained specifically on night scenes.

The DrivingStereo (DS) [39] dataset consists of real im-
ages from driving scenes captured at different weathers.
We randomly sample 500 points from GT as sparse depth.
Our method consistently outperforms baselines under all
weather conditions, and is more robust (OGNI-DC’s RMSE
1 52% under “Rainy” than “Sunny”, while ours’ RMSE |
4%.)

L=Ls+02-Lp, (1)

where L is the original photometric loss in 3DGS [12],
and L  is the edge-aware depth loss proposed in [31].

We evaluate on the ETH3D [28] dataset with 13 scenes,
each containing 14-76 images. The scales of the scenes are
large, creating a challenging sparse view setting. We com-
pare against the vanilla 3DGS with no depth supervision, as
well as supervising with the depth map obtained from the
monocular depth model ZoeDepth [3], and the depth com-
pletion model G2-MD [34]. For ZoeDepth, we align the
scale and shift against the COLMAP sparse depth, follow-
ing DN-Splatter [31]. For G2-MD and our method, we run
depth completion on the COLMAP sparse depth. In ad-
dition to the results presented in the paper, we also com-
pare against the state-of-the-art multi-view stereo (MVS)
method, MVSFormer++ [5].

We randomly split 1/8 of the view as test views and use
the rest for training. The training follows the [31] schedule
for 30K steps. We have reported the image quality statistics
PSNR, SSIM, and LPIPS, as well as the RMSE between the
rendered depth and the ground-truth depth on test views.



Table e. The novel view synthesis metrics and the depth accuracy
averaged on the 13 scenes from ETH3D.

Methods apGs 2% camp MY Ours
Depth Former++
PSNR 1 1564 1896 1936  20.02 20.38
SSIM * 0.557 0573 0.641  0.644  0.660
LPIPS | 0418 0324 0273 0254 0.229
RMSE (Depth) | 3.857 2.163 1904  1.847 0.838

As shown in Tab. e, OMNI-DC outperforms all meth-
ods in terms of both rendering and geometry reconstruction
quality.

More visualizations are shown in Fig. c. The 3DGS reg-
ularized with our depth maps produces much fewer floater
artifacts compared to baselines. This shows that users can
directly use our OMNI-DC to improve the 3DGS quality,
without any retraining for the depth model.

F. Implementation Details

F.1. Model Architecture and Loss Functions

We use the CompletionFormer [41] as the backbone. Com-
pletionFormer is a U-Net-like [25] architecture with a fea-
ture pyramid. We extract the depth gradients by using the
1/4 resolution feature map with a series of ResNet [9]
blocks and MaxPool2D layers, to obtain the depth gradi-
ents at the 1/4, 1/8, and 1/16 resolution.

From the full-resolution feature map, we extract the pa-
rameters for the DySPN [16] (propagation weights and con-
fidence) and scale parameters for computing the Laplacian
loss. Specifically, since the scale parameter b must be posi-
tive, we parameterize it as b = exp(~y) following [36], and
predict v from a Conv layer. We clamp the minimum value
of v to —2.0 to stabilize training.

To better deal with the noise in the input depth, we fol-
low OGNI-DC [42] and use a sigmoid layer to predict a
confidence map for the input sparse depth. Denote the con-
fidence map as C € (0,1)H*W the sparse depth energy
term is re-weighted as (see Eqn.3 in the main paper):

W,H
Eo=Y M;-Cy;-(Di;—0;,) 2)
i

When C; ; — 0, the contribution of the corresponding
sparse depth point becomes zero, providing a data-driven
mechanism for the network to ignore the noisy depths. Un-
like OGNI-DC which trains the confidence map through
the depth loss, we record the noisy pixels when generating
the virtual sparse pattern and use an axillary binary cross-
entropy loss to directly supervise the confidence map.

The gradient-matching loss is implemented following
MegaDepth [24] and MiDaS [24]:

4 WH

1
Lon = 777 > D ([VaBRE [+ [V RE]) . G

k=1 i,j

Where R' = D — D, Similarly, R is the depth differ-
ence at the k™ resolution.

F.2. Training Details

The model is trained with an Adam [13] optimizer with an
initial learning rate of le — 3, for a total of 72 epochs. The
learning rate decays by half at the 36", 48™, 56, and 64"
epochs, following [41].

Since the five training datasets are vastly different in size,
we uniformly sample 25K images from each dataset to bal-
ance their contributions in each epoch. We also normalize
the median depth values of all training samples to 1.0 to
balance the loss among different types of scenes.

We sample the random samples, SfM keypoints, and Li-
DAR points with a ratio of 2:1:1. This ratio empirically
yeilds good performance, but the performance of our model
is not sensitive to it. Random point densities are sampled
in the range 0.03% ~ 0.65% (i.e., 100 ~ 2000 points).
The SfM points are sampled at the SIFT [18] keypoints.
For the random and SfM points, we also inject 0% ~ 5%
noisy depths by random sampling between the 5* and 95"
percentile interval of the image depth range. When gener-
ating the LiDAR keypoints, we randomize the number of
lines, the center of the LiDAR, and the camera intrinsics.
We additionally synthesize the boundary error caused by the
baseline between the camera and the LiDAR. Specifically,
we random sample a virtual viewpoint for the LiDAR., and
project the depth to the virtual view. This leaves holes in
the projected depth map, so we use the heuristic-based in-
painting used in LRRU [35] to fill those holes. We finally
sample the LiDAR points from the virtual view, and project
it back to the original view.

G. Limitations

1) Like other depth estimation models, our method faces
challenges when predicting depth for transparent surfaces
(e.g., glasses), reflective surfaces, or the sky. In Fig. d we
show a few failure cases. 2) The backbone of our method
takes 4 channels (RGB-D) input, which makes it hard to
benefit from the pre-trained models designed for RGB im-
ages, such as DINO-v2 [20]. One possible direction is re-
moving the depth channel from the feature extractor. 3)
Our model currently cannot deal with the case with no
sparse depth inputs (i.e., monocular depth estimation). Hav-
ing the model’s performance degrade more smoothly when
the input depths become sparser is a future direction. 4)
The current model cannot handle certain types of sparse
depth patterns very well, such as the radar inputs discussed
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Figure c. Visualization of the rendered images and rendered depth maps against ground-truth on test views of the ETH3D dataset. The
vanilla 3DGS is trained with only the photometric loss, and all other rows are trained with a depth loss against the predicted depth maps of
the corresponding models. Our model generates significantly higher quality images and geometry (depth maps).

in Sec. C, and large holes that may appear in object re-
moval/inpainting applications. Expanding the sparse depth
synthesis pipeline to cover these during training is a promis-
ing direction.

H. More Results on the NYUv2 Dataset

We show results on more densities in Tab. f. We exclude
all the in-domain DC baselines trained on the NYU train-

ing set from the ranking. Our method works better than
all zero-shot baselines on the 500, 200, 100, and 50 den-
sities. On the original setting of NYUv2 (NYU-500), our
method has a close performance to the best model trained
on NYU (REL=0.014 vs 0.011 for DFU [37]). On the ex-
tremely sparse case (NYU-5), our method works better than
OGNI-DC [42] and G2-MD [34], although worse than the
monocular depth methods such as Depth Pro [4].



Table f. Results on the NYUv2 dataset with 5-500 random samples. The numbers in gray are trained on NYU with 500 points, and we
exclude them from the ranking. On relatively dense inputs, our method works the best among all the methods tested zero-shot, and is very
close to the best model trained on NYU (REL=0.014 vs 0.011 for DFU [37] on NYU-500). On NYU-5, our method works better than all

DC baselines (RMSE=0.536 vs 0.633 for OGNI-DC [42]).

Methods NYU-500 NYU-200 NYU-100 NYU-50 NYU-5

RMSE REL RMSE REL RMSE REL RMSE REL RMSE REL
CFormer [41] 0.090 0.012 0.141  0.021 0429 0.092 0.707  0.181 1.141  0.307

Trained on DFU [37] 0.091 0.011 - - - - - - - -
NYU BP-Net [30] 0.089 0.012 0.132 0.021 0414 0.090 0.609 0.157 0.869 0.294
DPromting [23] 0.105  0.015  0.144  0.023  0.178 0.031 0213  0.043  0.380  0.095
OGNI-DC [42] 0.089 0.012 0.124 0.018 0.157 0.025 0207 0.038 0.633 0.171
Depth Pro [4]  0.266  0.062 0.266 0.062 0.266 0.062 0.266 0.062 = 0.266  0.062
DA-v2 [40] 0.309 0.061 0.309 0.061 0314 0.062 0330 0.063 0.814 = 0.136
Zero-shot  Marigold [11] 0426 0.115 0428 0.116 0431 0.117 0436 0.118 0.545 0.150
G2-MD [34] = 0.122 0.017 0.169 0.027 0222 0.038 0286 0.056 0.744 0.207
Ours 0.111 0.014 0.147 0.021 0.180 0.029 0.225 0.041 0.536 0.142

Sky Reflection

wrong. SfM
| matchings

Figure d. Failure cases of OMNI-DC. Our model makes erroneous
predictions when the scene contains glasses or reflective surfaces,
as the depth sensor or multiview matching may fail. The sky can-
not be naturally represented in the linear depth space.

I. Visualizations of Point Cloud

We visualize the 3D reconstruction quality of our predicted
depth map by projecting the depth map into 3D using the
ground-truth camera intrinsics. We also compared against
the few strongest baselines, i.e., DepthAnythingv2 [40],
OGNI-DC [42], and G2-MonoDepth [34]. As shown in
Fig. e, our method achieves better results in both global
structures (orientation of the walls) and local details (cars).

J. Details on Evaluation Datasets

We list the details of the datasets we use below. Samples
from the datasets can be found in Figs. g to i.

iBims [14] consists of 100 indoor scenes captured with
a laser scanner. The original images are at 480x 640 resolu-
tion.

ARKitScenes [2] is a large scale dataset consisting of
more than 450K frames of scans of 5K indoor scenes. The
validation split contains about 3.5K images in the landscape
orientation, from which we randomly pick 800 images as
our test set. The original high-res laser-scan images are at
resolution 1440x 1920, from which we resize to 480 x 640.

ETH3D [28]’s test set contains 13 scenes total with 454
images, with ground-truth captured using a laser scanner.
The original images are at 4032x6048 resolution, from
which we downsample at approximately a factor of 8 to
480x640. We pick the “office” and the “courtyard” scene
as the validation set, and further split the rest 11 scenes into
indoors (6 scenes, 193 images) and outdoors (5 scenes, 197
images). For the real SfM patterns, we project the visible
keypoints from the COLMAP [27] reconstruction for each
scene into 2D to construct the sparse depth map.

DIODE [33]’s validation split contains 3 indoor scenes
and 3 outdoor scenes, with 325 and 446 images in total re-
spectively. The ground truth is captured with a FARO laser
scanner. We find that the original depth measurements at
occlusion boundaries are very noisy. Therefore, we filter
out the pixel whose depth is different from its neighboring
pixels by more than 5% (indoor) and 15% (outdoor). This
effectively removes the noise while preserving most of the
useful information. Images are resized to 480 640.

KITTI [32]’s validation set contains 1000 images from
5 scenes in total. We subsample the original 64-line LIDAR
by clustering the elevation angles of the LiDAR points to
construct the virtual 16-line and 8-line input following [10].
We crop the top 96 pixels containing only sky regions, re-
sulting in an image resolution of 256x1216.

K. Test-Time Scaling Up to Higher-Resolution
Images

Most of the experiments in this paper are conducted under
the resolution of 480x 640. However, modern cameras can
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Figure e. The qualitative comparison of the 3D structures between our method and the best-performing baselines. On the outdoor scene
from ETH3D, DA-v2 [40] has trouble capturing the global structure, while OGNI-DC’s reconstruction has distorted local details. On the
noisy sparse depth map on iBims, the OGNI-DC’s prediction is greatly distorted by the outliers, and our method is robust to noise. On
KITTI, our method is able to reconstruct the high-quality 3D structure of the white car.

often capture images at a higher resolution, which captures
more details. Therefore, it is desirable that our DC model
can work under higher resolutions.

We feed OMNI-DC with high-resolution images at test
time. As shown in Tab. g, the inference time is 2.1x and
3.6x longer when tested on images with 2x and 2.7X res-
olution, respectively, a lower rate compared to the increase
in pixel count. The memory consumption is 11.1GB when

tested under the resolution of 1280x 1706, which can be
held on a 12GB GPU such as an RTX 4070.

Qualitative results are shown in Fig. f. While OMNI-DC
is trained on a low resolution (480x640), it can generalize
to higher resolution images at test time, producing higher
quality depth maps.

The results show that OMNI-DC has a strong capability
of scaling up to higher-resolution images at test time.
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Figure f. More details are captured when running inference with higher resolution images at test time. All sparse depths are sampled under
the 0.7% density.

Table g. Speed ane memory consumption on higher resolutions.
Numbers benchmarked on a 3090 GPU.

Resolution 480x640 960x1280 12801706
Inference Time (ms) 235 495 839
Memory (GB) 4.6 7.9 11.1

L. Guaranteed Scale Equivariance

Scale equivariance means the scale of the output depth re-
spects the scale of the input depth. For example, when the
input is given in the unit of millimeters (mm), the output
should also be in millimeters. This is a desired property, as
it makes the system simple to use. For example, if a DC
model is not scale-equivariant, the user will have to con-
vert it to metric space before feeding it into the DC model,
which requires estimating the arbitrary scale factor from
their COLMAP reconstruction and could be impossible.

Assume F' to be a DC model taking the RGB image I
and the sparse depth map O as input, and outputs a dense
depth map f), ie.,

D = F(1,0). “)

We formally define the equivariance property as follows:

F(I,ﬂO):ﬂF(I,O),VB€R+7 (5)

where £ is an arbitrary scale factor. For example, 5 = 1000
when converting depth from meters (m) into millimeters
(mm).

We first theoretically prove that OMNI-DC is guaranteed
to be scale equivariant, and then confirm it by empirical re-
sults.

L.1. Theoretical Proof

We first show that the input to the neural network is invari-
ant to the scale of the input depth. Recall that we normalize

the input depth values to the neural network by its median:

G = F(1,0:6),0 = log(0) — log(median(0)). (6)

It is easy to see that O is invariant to the input scale, i.e.,

O(8 - 0) = log(5 - O) — log(median(s - O))
= log(B) + log(0O) — log(B3) — log(median(0)) (7)
= 0(0),V3 e R,.

Correspondingly, the output of the neural network, G,
is also invariant to the input scale, because all its input is
scale-invariant:

G(I,3-0) = G(I1,0),¥5 € R ®)

We therefore omit the input of G and treat it as a constant
in the following deductions.

Note that the depth integration is done in the log-depth
space, and recall the energy terms are:

D8 = arg min (a -£0(D"°8, 0, M) + E¢(D'¢8, G)) ,

Dlog
)
where
W,H
Eo = Z Mi,j : (Dit?]g - IOg(Oi,j))27
1: W.H . N2 Ay \2
&g = Z; Z (nya‘ - Gii) * (G?’j - Gij) ’
rT= 2,
(10)

: T o, __ T T . ™Y . T T -
with G['7 .= D}, —DI_, .1 G["Y := D}, — D _, being

the analytical gradients at the resolution 7.



A WeAwrite D2 as a function of G, O, and M, i.e.,
D"°#(G, 0, M). Given the above definition, we have the
lemma below:

Lemma 1 If D'°8(G,0,M) is the optimal solution to
Eq. (9), then log 8 + ﬁlog(é, O,M) is the optimal so-
lution if we multiply O by B, ie., D'°5(G,5 - O,M) =
log 3+ Ds(G,0,M), V3 € R,

This can be seen from the linearity of Eq. (10). Plugging
log 3 + D!°8 and 3 - O into Eq. (10) gives the exact same
energy as D'°% and O.

Given Lemma 1, we finally have

D(G,3-0,M) = exp (ﬁlog(é7ﬁ . O7M))
= exp (logﬁ +D"e(G, 0, M)) (11)
=3-D(G,0,M),v3 € Ry. O

L.2. Empirical Evidence

Table h. Guaranteed Depth Scale Equivalence. Metric is REL.

Depth Scale 0.001x 0.1x 1x 10x  1000x
CFormer [41] 810.8 5404 0.236 0.684 0.997
OGNI-DC [42] 7.079 0.704 0.158 0.387 0.622
G2-MD [34] 0.386 0.187 0.108 2.693 145.1
Ours 0.081 0.081 0.081 0.081 0.081

We test OMNI-DC and several baselines on the ETH3D-
SfM-Indoor validation split. In each column, we multiply
both the input sparse depth and ground-truth depth by a
scale factor and compute the relative error:

1Dy, — DY

REL(D, D%) —HW Z D" - (12)

The REL error should be a constant across all scales if
the model has the scale-equivariance property. Results are
shown in Tab. h. Our method has the same REL error across
all scales, proving the guaranteed scale equivariance in our
implementation. All baselines fail catastrophically on the
extreme cases (e.g., x 1000 when from m to mm).

M. Evaluation Details

M.1. Baselines

We run Depth Pro [4] to directly predict metric depth, with-
out considering the sparse depth input. We estimate the
global scale and shift in the least square manner against the
sparse depth points for Marigold [11] (in linear depth space)
and DepthAnythingv2 [40] (in disparity space).

For BP-Net [30], Depth Prompting [23], and OGNI-
DC [42], we use their model trained on NYUv2 and KITTI
for indoor and outdoor testing, respectively. We use the
DFU [37] checkpoint trained on KITTI for all experiments,
since its NYU code is not released. G2-MD [34] needs a
separate scaling factor for indoors and outdoors, and we use
20.0 and 100.0 as suggested by the authors.

Note that while we provide the most favorable settings
for all baselines, our method has only a single model and
does not need separate hyperparameters for indoor and out-
door scenes, making it the simplest to use.

M.2. Evaluation Metrics

The metrics are defined as follows:

MAE(D, D) = Z ID;; — DY |
S R 31
( Y ) - HW ' 7,j Digt]

1 W,H
RMSE(D, D#) = e > (D;; - D)2
‘5]‘
D¢
61 (D, D) = Z 1 (max (Dg[ B ’J> < 1.25)

N. Accuracy Breakdown

More quantitative results are shown in Tabs. j to I. Com-
pared to Tab.2 in the main paper, we separate the results for
indoor and outdoor scenes. Our method works better than
baselines under almost all settings.

0. Qualitative Comparison

Visualizations are provided in Figs. g to i. Compared to
DC methods G2-MD [34] and OGNI-DC [42], our method
generates much sharper results and is more robust to noise.
While DA-v2 [40] produces sharp details, its global struc-
ture is always off, especially for outdoor scenes.

P. More Ablations on the Laplacian Loss

To show the necessity of using an L; loss along with L,
we conduct additional ablation studies as shown in Tab. i.
Our solution with L, works the best. This is because DC
is a dense prediction task, i.e., the error on every pixel con-
tributes to the final metrics. While L,,,, helps convergence,
it falls short of enforcing a reasonable depth for every pixel.
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Figure g. First row/column: gt and predicted depth; second row/column: RGB, sparse depth (superimposed), and error maps (blue means
small errors).
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Figure h. First row: gt and predicted depth; second row: RGB, sparse depth (superimposed), and error maps (blue means small errors).
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Figure i. First row: gt and predicted depth; second row: RGB, sparse depth (superimposed), and error maps (blue means small errors).




Table i. Ablations on removing the L; loss.

ETH-MAE ETH-REL KITTI-MAE KITTI-REL

Liap 11.208 1.410 1353 0.307
Liap + Lgm 0.525 0.081 1.179 0.282
Liap+Lgm+L1  0.490 0.076 1.173 0.277




Table j. Quantitative comparison with baselines on the synthetic depth patterns on the indoor scenes. Results averaged on the ARK-
itScenes, iBims, ETH3D-indoor, and DIODE-indoor subsets.

0.7% 0.1% 0.03%
RMSE MAE REL 01 RMSE MAE REL 01 RMSE MAE REL 01

Depth Pro [4]  0.636 0.524 0.176 0.746 0.636 0.524 0.176 0.746 0.636 0.524 0.176 0.746
DA-v2 [40] 0.626 0.193 0.042 0982 0.632 0.194 0.042 0982 0.636 0.195 0.042 0.981
Marigold [11]  0.306 0.182 0.060 0.954 0.309 0.184 0.060 0.952 0.314 0.186 0.061 0.952
CFormer [41]  0.151 0.025 0.006 0.996 0.883 0.557 0.161 0.679 1417 1.042 0.301 0432
DFU [37] 2.166 1425 1.118 0.508 3.930 2941 2002 0.267 5920 4.659 3.073 0.140
BP-Net [30] 0.236  0.044 0.014 0983 0.709 0454 0.139 0.748 1.009 0.744 0.216 0.511
OGNI-DC [42] 0.105 0.020 0.005 0.997 0.236 0.078 0.017 0990 0421 0.199 0.049 0.958
G2-MD [34] 0.107 0.024 0.007 0997 0.195 0.065 0.019 098 0327 0.163 0.056 0.955
Ours 0.084 0.015 0.004 0.997 0.151 0.038 0.010 0.994 0.233 0.076 0.020 0.987

5% Noise 10 % Noise ORB [26]
RMSE MAE REL o1 RMSE MAE REL o1 RMSE MAE REL 01

Depth Pro [4]  0.636 0.524 0.176 0.746 0.636 0.524 0.176 0.746 0.636 0.524 0.176  0.746
DA-v2 [40] 1.079 0527 0.217 0.857 1.793 0.851 0339 0.701 1.507 1.123 0.797 0.963
Marigold [11]  0.318 0.190 0.063 0.954 0.347 0.217 0.072 0.949 0426 0311 0.131 0.893
CFormer [41]  0.253 0.056 0.017 0983 0.335 0.096 0.031 0965 1420 1.059 0.339 0415
DFU [37] 2220 1463 1.114 0496 2267 1.507 1.114 0481 5611 4.190 2949 0.260
BP-Net [30] 0.315 0.089 0.030 0964 0.393 0.142 0.050 0939 1.228 0906 0.354 0422
OGNI-DC [42] 0.202 0.047 0.014 0986 0.283 0.084 0.027 0970 0.656 0438 0.171 0.713
G2-MD [34] 0.134  0.029 0.008 0.996 0.155 0.034 0.009 0995 0438 0280 0.124 0.824
Ours 0.090 0.016 0.004 0.997 0.097 0.019 0.005 0.997 0.240 0.127 0.057 0.944

SIFT [18] LiDAR-64-Lines LiDAR-16-Lines
RMSE MAE REL o1 RMSE MAE REL o1 RMSE MAE REL 01

Depth Pro [4]  0.636 0.524 0.176 0.746 0.636 0.524 0.176 0.746 0.636 0.524 0.176  0.746
DA-v2 [40] 0.749 0549 0390 0973 2359 0300 0.108 0980 0.597 0.189 0.041 0.982
Marigold [11]  0.413 0.301 0.127 0905 1.166 0.182 0.060 0.954 0.306 0.182 0.060 0.954
CFormer [41]  1.315 0978 0317 0442 3473 0.017 0.004 0.997 0.255 0.075 0.020 0.981
DFU [37] 5721 4305 2992 0239 5277 1472 1319 0.629 2455 1.726 1361 0.449
BP-Net [30] 1.150 0.836 0.328 0469 2217 0.037 0.012 0985 0.346 0.110 0.036 0.954
OGNI-DC [42] 0.517 0.332 0.134 0.807 1.242 0.016 0.004 0.997 0.154 0.040 0.009 0.995
G2-MD [34] 0.402 0.257 0.117 0.834 0.882 0.022 0.006 0.997 0.150 0.045 0.012 0.994
Ours 0.203 0.101 0.046 0960 0.611 0.016 0.004 0.997 0.107 0.024 0.006 0.996

LiDAR-8-Lines
RMSE MAE REL 01

Depth Pro[4]  0.636 0.524 0.176  0.746
DA-v2 [40] 0.602 0.194 0.042 0.982
Marigold [11]  0.309 0.187 0.062 0.951
CFormer [41] 0934 0.609 0.168 0.662
DFU [37] 4.022 3.029 2.141 0.257
BP-Net [30] 0.816 0.587 0.179 0.652
OGNI-DC [42] 0.287 0.114 0.028 0.979
G2-MD [34] 0.219 0.083 0.023 0.988
Ours 0.163 0.050 0.014 0.993

Methods

Methods

Methods

Methods




Table k. Quantitative comparison with baselines on the synthetic depth patterns on the outdoor scenes. Results averaged on the ETH3D-
outdoor and DIODE-outdoor subsets.

0.7% 0.1% 0.03%
RMSE MAE REL 01 RMSE MAE REL 01 RMSE MAE REL 01

Depth Pro [4]  7.712 6.368 0426 0.183 7.712 6368 0426 0.183 7.712 6.368 0426 0.183
DA-v2 [40] 6.003 1993 0.114 0924 6.195 2.103 0.116 0919 6314 2118 0.121 0.922
Marigold [11]  2.454 1.351 0.123 0.884 2514 1.382 0.124 0.882 2.619 1.425 0.130 0.881
CFormer [41] 4999 3239 0.663 0.625 9.578 7.504 1437 0.360 12.149 10.198 1.875 0.240
DFU [37] 2771 1255 0.158 0.850 5486 3.198 0.440 0.609 7.504 4.779 0.685 0.466
BP-Net [30] 3.046 1281 0.102 0917 6.368 3.766 0276 0.758 7.112 4379 0.340 0.672
OGNI-DC [42] 1.747 0.554 0.046 0967 2974 1449 0.169 0.855 4.140 2484 0.330 0.710
G2-MD [34] 1453 0368 0.032 0980 2261 0.868 0.086 0933 3235 1772 0.171 0.803
Ours 1.275 0292 0.022 0985 1.889 0.599 0.044 0967 2477 0970 0.070 0.942

5% Noise 10 % Noise ORB [26]
RMSE MAE REL o1 RMSE MAE REL o1 RMSE MAE REL 01

Depth Pro [4]  7.712 6.368 0426 0.183 7.712 6.368 0426 0.183 7.712 6368 0426 0.183
DA-v2 [40] 8.680 4452 0.281 0.646 10.893 6302 0463 0350 5.066 2.026 0.112 0.895
Marigold [11]  2.505 1.390 0.123 0.887 2.630 1.512 0.129 0.882 2.738 1.637 0.156 0.825
CFormer [41]  5.064 3316 0.674 0.617 5.133 3401 0.686 0.608 7.577 4988 0979 0.544
DFU [37] 3262 1.620 0.185 0.800 3.713 1.995 0.213 0.747 4376 2469 0370 0.655
BP-Net [30] 3.120  1.340 0.113 0901 3242 1441 0.129 0.879 4302 2.112 0.205 0.805
OGNI-DC [42] 1.962 0.690 0.057 0954 2160 0.822 0.069 0940 3.019 1480 0.194 0.826
G2-MD [34] 1.553 0.402 0.034 0978 1.663 0442 0.035 0975 2019 0.794 0.081 0.920
Ours 1.323 0313 0.023 0983 1390 0.341 0.024 0982 1.646 0.514 0.039 0.967

SIFT [18] LiDAR-64-Lines LiDAR-16-Lines
RMSE MAE REL o1 RMSE MAE REL o1 RMSE MAE REL 01

Depth Pro [4]  7.712 6.368 0426 0.183 7.712 6.368 0426 0.183 7.712 6.368 0.426 0.183
DA-v2 [40] 5.580 2082 0.116 0905 5918 1960 0.113 0924 6.033 2.030 0.114 0.923
Marigold [11]  2.671 1.583 0.155 0.847 2451 1.340 0.123 0.884 2468 1.349 0.124 0.883
CFormer [41]  7.788 5450 1.125 0.507 3.351 1.758 0.339 0.771 4424 2628 0.513 0.696
DFU [37] 4388 2475 0408 0.662 2975 1.191 0.181 0.844 3380 1.656 0.192 0.815
BP-Net [30] 4352 2.174 0.239 0.807 2.234 0.787 0.075 0.937 4.505 2243 0.160 0.873
OGNI-DC [42] 2.690 1.299 0.185 0.837 1.550 0435 0.035 0974 2.157 0.831 0.081 0.937
G2-MD [34] 1.844 0.677 0.077 0925 1200 0.292 0.025 0985 1.756 0.524 0.047 0.970
Ours 1429 0403 0.034 0974 1271 0303 0.023 0983 1.513 0412 0.031 0.978

Methods

Methods

Methods

LiDAR-8-Lines
RMSE MAE REL 01

Depth Pro [4]  7.712 6.368 0.426 0.183
DA-v2 [40] 6.304 2.056 0.119 0.922
Marigold [11]  2.578 1.382 0.124  0.883
CFormer [41]  7.759 5549 1.071 0.472
DFU [37] 5242 3.027 0401 0.623
BP-Net [30] 5.859 3282 0226 0.776
OGNI-DC [42] 3.354 1.671 0.197 0.824
G2-MD [34] 2404 0918 0.078 0.936
Ours 2.096 0.715 0.048 0.961

Methods




Table 1. Quantitative comparison with baselines on the ETH3D-SfM and KITTIDC. The numbers in gray are trained on KITTI and excluded
from the ranking.

ETH3D-SfM-Indoor ETH3D-SfM-Outdoor KITTI-64-Lines
RMSE MAE REL 01 RMSE MAE REL 01 RMSE MAE REL 01

CFormer [41] 2.088 0.811 0229 0616 9.108 4.782 1.215 0.520 0.741 0.195 0.011 0.998
DFU [37] 3572 2417 1.105 0446 4296 2494 0588 0.624 0.713 0.186 0.010 0.998
BP-Net [30] 1.664 0.864 0.301 0.600 4.342 1.859 0.339 0.770 0.784 0.204 0.011  0.998
DPromting [23] 1.306 1.004 0.269 0.605 5.596 4.664 0.846 0.349 1.078 0.324 0.019 0.993
OGNI-DC [42] 1.108 0.520 0.181 0.758 2.671 1270 0.268 0.787 0.750 0.193 0.010 0.998
Depth Pro [4] 0928 0.749 0.208 0.659 5433 4.824 0441 0.196 4.893 3233 0.211 0.651
DA-v2 [40] 0.592 0.280 0.065 0950 2663 0.805 0.082 0935 4561 1925 0.090 0.924
Marigold [11] 0.627 0472 0.152 0.842 1.883 1270 0.252 0.715 3462 1911 0.118 0.889
G2-MD [34] 1.068 0416 0.164 0.896 2453 0.770 0.153 0.889 1.612 0.376 0.024 0.986

Methods

Ours 0.605 0.239 0.090 0.932 1.069 0312 0.053 0953 1.191 0.270 0.015 0.993
KITTI-32-Lines KITTI-16-Lines KITTI-8-Lines
Methods
RMSE MAE REL 01 RMSE MAE REL 01 RMSE MAE REL 01
CFormer [41] 1.245 0387 0.022 0991 2.239 0.882 0.050 0969 3.650 1.701 0.102 0.877
DFU [37] 1.099 0.315 0.018 0.995 2.070 0.738 0.040 0976 3.269 1.468 0.08 0.915
BP-Net [30] 1.032 0.296 0.016 0996 1.524 0490 0.026 0991 2.391 00953 0.052 00971

DPromting [23] 1.234 0.382 0.021 0992 1475 0477 0.025 0.990 1.7907 0.6344 0.0322 0.986
OGNI-DC [42] 1.018 0.268 0.014 0996 1.664 0.453 0.022 0990 2363 0.777 0.039 0.977
Depth Pro [4] 4.893 3233 0211 0.651 4.893 3.233 0.211 0.651 4.893 3.233 0.211 0.651
DA-v2 [40] 4583 1928 0.090 0923 4615 1934 0.090 0923 4.689 1951 0.091 0.922
Marigold [11] 3463 1902 0.117 0.892 3468 1904 0.117 0.891 3498 1939 0.120 0.885
G2-MD [34] 1.802 0.447 0.027 0985 2222 0.645 0.035 0981 2769 0.901 0.046 0.970
Ours 1.398 0339 0.019 0990 1.682 0.441 0.023 0987 2.058 0.597 0.030 0.982
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