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Figure S1. Qualitative comparisons between ground truth video frames and reconstructed meshes obtained from the proposed SMPL-X
pose fitting pipeline on CSL-Daily (left) and Phoenix-2014T (right). Zoom-in for hand details.

A. Curating SMPL-X Poses

To curate a high-fidelity dataset with accurate 3D annota-
tions, we rely on state-of-the-art performing methods for 3D
hand [13] and body reconstruction [10]. Specifically, given
a 2D video of a signer, we first detect the number of iden-
tities in the video using an off-the-shelf detector [11] and
retain the most confident detection box. Following that we
feed the tight human crop to OSX [10] to extract a rough
human body pose estimation. Given that OSX often fails
to accurately capture the arm positions and the hand poses,
we follow a two-step approach that accurately refines the
human pose. To accurately reconstruct the fine details of
the hand poses, we utilize WiLoR [13], a state-of-the-art
3D reconstruction pipeline that can detect and reconstruct
challenging hand poses with high fidelity. We acquire the
hand poses of WiLoR along with the global orientation of
the hand and directly substitute the hand parameters derived
from OSX. In the second state, we employ Mediapipe body
pose estimation [11] to extract 2D joint location J2D for the
shoulders and the arms. Using the derived joint locations,
we employ an optimization scheme that refines the OSX
poses of the upper body, while keeping the hand poses and
orientation fixed:

Lrec = ||J2D −ΠK(Ĵ3D)||1, (S1)

where Ĵ3D are the predicted 3D joints and ΠK is the weak-
perspective projection. To further constrain the temporal
coherence of the reconstructions, we include an additional
temporal loss Ltemp:

Ltemp = ||Xf −Xf−1||2 + ||Jf − Jf−1||2, (S2)

where Xf denotes the 3D mesh in frame f . Finally, to pe-
nalize irregular poses, we include a pose regularization:

Lreg = ||θ||2 (S3)

that constrains irregular upper body poses.
Since neither CSL-Daily [16] nor Phoenix-2014T [3]

provides 3D annotations, we perform qualitative evalua-
tions, as illustrated in Figure S1. The results clearly demon-
strate that the proposed pose fitting pipeline can accurately
reconstruct 3D hands and is robust across various hand-
shapes. To quantitatively assess the pipeline, we further ap-
ply it to the SGNify mocap dataset [6], which includes 57
signs with annotated meshes. The results presented in Table
S1 indicate that our method achieves the lowest hand recon-
struction errors and comparable body errors to the previous
best method [2], establishing our approach as a powerful
tool for curating more sign language datasets in the future.
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How do we move around in belly dance?
朋友抱怨她的妈妈很唠叨。
(My friend complains that her mom is very naggy.)

Und nun die Wettervorhersage für morgen. 
(And now the weather forecast for tomorrow.)

Figure S2. Qualitative comparisons of generated signs between our proposed method, SOKE, with the SOTA method, S-MotionGPT [7],
on the test sets of How2Sign (left), CSL-Daily (middle), and Phoenix-2014T (right).

Method Body↓ Left Hand↓ Right Hand↓

FrankMoCap [14] 78.07 20.47 19.62
PIXIE [5] 60.11 25.02 22.42
PyMAF-X [15] 68.61 21.46 19.19
SMPLify-X [12] 56.07 22.23 18.83
SGNify [6] 55.63 19.22 17.50
OSX [10] 47.32 18.34 18.12
NSA [2] 46.42 16.17 15.23

Ours 46.73 10.55 8.94

Table S1. Reconstruction errors on SGNify mocap dataset [6]. We
report mean per vertex errors in mm.

B. Additional Qualitative Results

Please refer to our project page for video demonstrations
of generated signs. These demos include ground truth sign
videos, as well as generations from the SOTA method, S-
MotionGPT [7], and our proposed SOKE. Additionally, we
provide several qualitative results to showcase the gener-
ated signs (Figure S2) and highlight the effectiveness of our
retrieval-enhanced SLG approach (Figure S3).

C. Additional Quantitative Results

Codebook Size. We perform a hyper-parameter analy-
sis on the codebook sizes for the body (NB

Z ) and hands
(NLH

Z , NRH
Z ) in our decoupled tokenizer. As shown in

我的手机被偷了。
(My phone was stolen.)

Hallo und guten abend.
(Hello and good evening.)This is a tasty drink.
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Figure S3. Qualitative ablation study for retrieval-enhanced SLG.
(Left: How2Sign; Middle: CSL-Daily; Right: Phoenix-2014T.)

Table S2, we find that using either larger or smaller code-
books results in degraded reconstruction performance. Our



NB
Z NLH

Z = NRH
Z

H2S (JPE↓) CSL (JPE↓) Ph-T (JPE↓)

Body Hand Body Hand Body Hand

96 128 19.37 7.07 23.52 5.80 25.79 7.35
96 256 19.37 6.86 23.52 5.52 25.79 7.11
64 192 20.04 6.65 24.13 5.13 26.02 6.78

128 192 19.95 6.65 23.91 5.13 26.27 6.78
96 192 19.37 6.65 23.52 5.13 25.79 6.78

Table S2. Study on the codebook sizes for the body (NB
Z ) and

hands (NLH
Z , NRH

Z ). We use procrustes-aligned mean per joint
position error (PA-MPJPE) to assess the reconstruction perfor-
mance of the decoupled tokenizer.

λ
H2S (DTW↓) CSL (DTW↓) Ph-T (DTW↓)

Body Hand Body Hand Body Hand

0.1 7.95 2.82 7.46 2.13 5.47 2.04
0.2 7.28 2.76 6.91 1.95 5.08 1.68
1/3 6.82 2.35 6.24 1.71 4.77 1.38
0.4 7.34 2.62 7.11 1.91 6.39 1.96

Table S3. Study on the impact of λ, a hyper-parameter used for
fusing part-wise token embeddings in our multi-head decoding
method.

Method
Multi
ling.

H2S (DTW↓) CSL (DTW↓) Phoenix (DTW↓)
Avg Body Hand Avg Body Hand Avg Body Hand

S-MotionGPT × 5.91 11.23 4.39 5.34 10.81 3.78 4.75 9.45 3.41
Ours × 4.14 7.92 3.07 4.18 8.18 3.04 3.83 7.25 2.85
Ours ✓ 3.34 6.82 2.35 2.72 6.24 1.71 2.13 4.77 1.38

Table S4. Performance of our method on monolingual datasets.

default configuration (NB
Z = 96, NLH

Z = NRH
Z = 192)

delivers the best performance among all settings.
Impact of λ on SLG. In our multi-head decoding method,
we introduce a hyper-parameter, λ, to control the weight
of hand tokens during embedding fusion. The results in
Table S3 demonstrate that λ = 1/3, i.e., assigning equal
weights to the body and hands, yields the best performance.
This further underscores the importance of each body part
in conveying the semantics of sign languages.
Monolingual Performance. As shown in Table S4, our
method still outperforms the SOTA method, S-MotionGPT,
when training on monolingual SL datasets, while the best
results are achieved by the multilingual version of our
method.

D. Illustration of Decoupled Tokenizer

As shown in Figure S4, we provide an illustration of our de-
coupled tokenizer for better understanding. It utilizes three
VQ-VAEs to model the key regions of a signer: the upper
body, left hand, and right hand.
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Figure S4. Workflow of our decoupled tokenizer. It is composed
of three parallel VQ-VAEs, each dedicated to generating motion
tokens for a different part of the signer’s body: the upper body,
left hand, and right hand.

E. Discussion

Broader Impacts. Sign language is the primary mode of
communication for the deaf communities. Due to signifi-
cant grammatical differences from spoken languages, a no-
table communication gap exists between the deaf and hear-
ing individuals. In this work, we propose an autoregres-
sive sign language model, which is capable of generating
multilingual sign language avatars from text inputs within a
single unified framework. Extensive quantitative and quali-
tative results suggest the potential of our method to form a
practical deaf-hearing communication system.
Limitations. Our method employs 3D avatars to repre-
sent signers, enabling high-fidelity motion representations.
However, there is a lack of 3D annotations in existing sign
language datasets. While our proposed SMPL-X pose fit-
ting pipeline can accurately reconstruct 3D meshes from
2D keypoints, some reconstruction errors are inevitable. In
the future, the release of more sign language datasets with
annotated meshes is anticipated, which could significantly
enhance avatar-based sign language generation models.
Future Works. We have validated the proposed multilin-
gual sign language generator on three widely-adopted sign
languages, Chinese, American, and German sign language
[4, 9, 16]. As the scalability of our approach has been
demonstrated in Table 3 of the main paper, in the future,
we plan to extend our method to support more sign lan-
guages, such as British Sign Language [1] and Indian Sign
Language [8].
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