
Supplementary Material:
VGGSounder: Audio-Visual Evaluations for Foundation Models

A. VGGSounder: Relabelling VGGSound
In the main paper, we highlighted several critical shortcomings of VGGSound, such as co-occurring classes, partially over-
lapping class definitions, multiple classes per sample, and modality misalignment. This appendix provides additional de-
tails about the relabelling process for obtaining the VGGSounder benchmark, addressing the specific issues identified in
VGGSound.

A.1. Labelling of the gold-standard subset
As described in Sec. 4, we started by creating a high-quality reference subset (gold-standard) for reliable label verification.
Four experienced computer vision researchers manually annotated randomly selected 10-second videos from the VGGSound
test set. Annotators labelled classes clearly present either audibly, visually, or both. We ensured full class coverage by
continuing the annotation process until all classes appeared at least once, resulting in 417 samples. These annotations were
merged using majority voting. The annotation interface employed in this phase is illustrated in Fig. 5.

Figure 5. Interface used to annotate the gold standard set in-house.

The annotators were instructed to try to identify all audible and visible classes in the video, including hard cases when
background music contains several instruments that compose the melody. For instance, a common instrument for the country
music genre would be playing the drum kit , female singing , male singing , playing the bass guitar ,
playing electric guitar etc. The annotators are expected to do their best to identify all of the instruments.

Gold-standard samples serve as high-quality annotations for further labellers’ cross-validation and automatic quality as-
sessment. If a labeller shows a high agreement score with the gold-standard labels, we expect them to have high-quality
labels outside of the gold-standard subset.

While analysing gold-standard labels, we made several interesting observations (see Tab. 5):
1. There is a significant portion of samples in the gold-standard set for which the original VGGSound labels (24.46%) are

absent.
2. The proportion of classes that are only audible across all samples is significantly higher than that of the visible ones.



Metric Value
Samples 417
Original class correct 283 (67.87%)
Original class audible 39 (9.35%)
Original class visible 22 (5.88%)
Original class absent 102 (24.46%)
Original class is only class 71 (17.03%)
Classes total 309
Classes only visible 6
Classes only audible 25
Average labels added per sample 1.39

Table 5. Relabelling statistics for the gold-standard subset.

While we cannot fix the second issue without substituting the dataset, the first issue quantifies the error introduced by
VGGSound and its automatic labelling and verification and can be eliminated with human labelling.

We ran a second round of gold-standard annotations where one computer vision expert checked all 15446 samples and
annotations in the VGGSound test set for their validity and enriched the correct labels with modality annotations. The
interface for this annotation is illustrated in Fig. 6.

Figure 6. Interface used in-house to annotate the original labels in the VGGSound test set.

The second set of gold-standard labels firstly enriched the original VGGSound labels with modality annotations, but most
importantly confirmed and further improved the estimates in Tab. 5 resulting in the following observation:

Around 48.43% of the original VGGSound test samples have either incorrect target labels or misaligned modalities.

The two sets of gold-standard annotations, while having mixed reliability (cross-validation with four people vs. one person),
serve as a strong grounding signal for our subsequent MTurk annotation pipelines.

A.2. Label proposals
To effectively scale human annotations to the entire test set, and to simplify the job for MTurk annotators, we introduced
a label proposal generation strategy that combines state-of-the-art audio-visual model predictions with label heuristics. We



(a) Example labelling interface for one video sample. (b) Labelling instructions

Figure 7. Labelling interface and instructions for our full annotation pipeline that we ran on MTurk. (a) Crowd workers are presented
with a 10-second long video clip from the VGGSound test set, along with label proposals. They are tasked to select if those or additional
VGGSound classes are audible or visible in the video clip. Furthermore, the workers are asked about meta-classes, such as background
music, voice-over, and static images. They also have the option of searching for new classes that are missing in the proposals. (b) Labelling
instructions provided to workers on Amazon Mechanical Turk before labelling the first video sample.

considered the following steps in our label proposals:

1. Model predictions:
• We provide the original VGGSound label, extended with modality annotations curated by an in-house labeler, as well

as the top-1 predictions of the following models 2 with visual and audio-visual inputs:
– CAV-MAE
– AVSiam
– Equi-AV
– DeepAVFusion
– Gemini 1.5 Flash
– Gemini 1.5 Pro

• We further included the top-5 predictions when using audio inputs from the same models.
2. Consensus labels:

• We created a secondary pool from the top-10 predictions across all modalities from AVSiam, CAV-MAE, and Equi-AV.
Additionally, labels associated with the highest 60,000 logits or probabilities across the dataset were added.

• Labels were proposed from this pool if at least two models independently agreed on their presence.
3. Common classes:

• Regardless of model predictions, we always proposed frequently occurring classes such as:

wind noise , wind rustling leaves , male speech, man speaking ,
female speech, woman speaking , child speech, kid speaking , bird chirping, tweeting ,

cricket chirping , sea waves .

This strategic combination ensured an average of 30 proposals per video, achieving approximately 93% recall relative to the
gold-standard set annotations.

A.3. Human labelling
Following our proposal strategy, we conducted extensive human annotation via Amazon Mechanical Turk (MTurk) to verify
and expand the automatically generated proposals:
• Worker qualifications: Participation was restricted to AMT Masters with an approval rate above 98%.

2Gemini 2.0 Flash, VideoLLaMA-2, Unified-IO-2, Panda-GPT, and Ola were not used when the proposals were generated.



(a) Audible classes. (b) Visible classes. (c) Audible and visible classes.

Figure 8. Class label frequency in VGGSounder by modality.

• Annotation interface: Annotators reviewed each video to confirm the presence and modality (audible, visible, or both) of
proposed labels. They could also suggest additional missing labels. Workers received detailed instructions (see Fig. 7b),
and the annotation interface used is presented in Fig. 7a.

• Quality control: Videos were grouped into batches of 20, each containing two gold-standard samples as catch trials.
Batches scoring below 25% F1-score on these catch trials were rejected and reassigned.

Our final pipeline ensured that each sample in the VGGSounder benchmark was labeled by at least three high-quality anno-
tators.

A.4. Automatically added classes

Class Added Class
timpani tympani
tympani timpani
dog barking dog bow-wow
dog bow-wow dog barking
Barn swallow calling Bird chirping, tweeting
Eagle screaming Bird squawking
Canary calling Bird chirping, tweeting
Mynah bird singing Bird chirping, tweeting
Magpie calling Bird squawking
Warbler chirping Bird chirping, tweeting
Wood thrush calling Bird chirping, tweeting
Goose honking Bird squawking
Duck quacking Bird squawking
Penguins braying Bird squawking
Baltimore oriole calling Bird chirping, tweeting
Crow cawing Bird squawking
Airplane flyby Airplane
Baby babbling People babbling
Bull bellowing Cattle mooing
Cow lowing Cattle mooing
People eating noodle People eating
People eating apple People eating
Eating with cutlery People eating
Bathroom ventilation fan running Running electric fan
Striking bowling Bowling impact

Table 6. Class mapping used to automatically add syn-
onymous classes and superclasses.

To resolve overlapping and ambiguous class definitions discussed in
Sec. 3, we automatically included synonymous classes and related su-
perclasses whenever subclasses were deemed present. For instance,
identifying cow lowing led to automatically including the super-
class cattle mooing . A detailed overview of these automatically
added classes and their relationships is provided in Tab. 6.

B. Class label frequency in VGGSounder
Fig. 8 shows the frequency of the 40 most common class labels by
modality. We observe that the label distribution appears to be very
similar for visible classes and for classes that are audible and visible.
This matches the label modality distribution in Figure 3B in the main
paper. Furthermore, we observe that the class label male speech
is occurs more frequently than female speech .

C. Model evaluations and input prompts
This section provides additional details about the evaluated models,
input prompts and evaluation methodology used in the zero-shot and
LLM-assisted evaluations described in Sec. 5 of the paper. Specifi-
cally, we detail the prompts and methods for generating classification
predictions for the models in the Gemini family [73] and for the open-
source foundational models VideoLLaMA-2 [21], Unified-IO 2 [53],
PandaGPT [72], and Ola [52].



C.1. Models
CAV-MAE [33] combines contrastive learning with masked data modelling to obtain strong audio-visual embeddings, used
for downstream retrieval and classification tasks. We use the multi-modal CAV-MAE-Scale+ model, pretrained on AudioSet
and fine-tuned on VGGSound. Following [33], unimodal and multi-modal variants use original pretrained model but we
fine-tune them on VGGSound only using the respective modality.

DeepAVFusion [57] integrates complementary features from the audio and visual modalities using a deep fusion mechanism,
enhancing joint processing for classification tasks. We use publicly available checkpoints for unimodal and multi-modal
models pre-trained on AudioSet and we then fine-tune them on VGGSound.

AV-Siam [49] uses a two-stream network to learn joint embeddings from audio and visual data. By maximising similarity
for corresponding pairs and minimising it for non-corresponding pairs, the model captures meaningful relationships between
modalities. We use public checkpoints of AV-Siam pre-trained on AudioSet, to then fine-tune it on VGGSound.

Equi-AV [43] is a transformer-based model that focusses on learning invariant embedding representations through an equiv-
ariant learning approach, making it robust to input variations. Again, we fine-tune original model pre-trained on AudioSet
using unimodal or multi-modal VGGSound data.

Gemini 1.5 Flash, Gemini 1.5 Pro and Gemini 2.0 Flash [73] are mixture-of-experts transformer models that process both
audio and visual information. For classification, the models are prompted to output class labels from the VGGSound class list
that match the input video clip, along with a caption. Unlike models trained on VGGSound, the Gemini models are assumed
to be free from VGGSound-specific biases. The complete input prompts are provided in Appendix C.

VideoLLaMA-2.1-AV (VideoLLaMA-2) [21] is a multi-modal foundation model that ingests audio and visual information in
two branches that independently process vision-language and audio-language data. The two branches are connected via a
language model. VideoLLaMA-2 exhibits strong results on audio-visual question-answering and captioning tasks. Details
about the model and prompts used are detailed in Appendix C.

Unified-IO-2 [53] is a 7B-parameter autoregressive encoder–decoder model that tokenises text, images, audio, and discrete
actions into one shared sequence, enabling “any-to-any” understanding and generation.

Panda-GPT [72] augments a frozen Vicuna-13B language model with ImageBind encoders by using a single linear projection
and LoRA adapters. These are trained on only 160k image-text instruction pairs. Despite this lightweight fine-tuning, the
model follows instructions across six modalities (image/video, audio, text, depth, thermal, IMU) and can seamlessly compose
their semantics in zero-shot settings.

Ola [52] is an omni-modal 7B LLM that progressively aligns modalities—starting with image–text, and then adding speech
and finally audio-visual video. It uses local–global attention fusion, dual audio encoders (Whisper [68] + BEATs [17]) and
sentence-wise streaming speech decoding. This staged training yields balanced, competitive accuracy for image QA, video
QA, and speech recognition.

Motivation for LLM-assisted evaluation
In Sec. 5, we briefly mentioned standard classification strategies for foundation models, such as:

• Directly asking for a class without providing a list of available classes (direct),
Some models, such as VideoLLaMA-2, Unified-IO-2, and PandaGPT, were pretrained on VGGSound. For certain prompts,
they return valid VGGSound classes, which makes character-level comparison feasible. However, their overall performance
on VGGSounder is low, as most outputs are synonym classes not included in the original class set.

• Prepending a list of all available classes to the classification prompt (zero-shot),
Here, we try to mitigate character-level comparison issues by prepending all 309 class names before the prompt: “Annotate
the video, explain in detail what is happening in the video. Use classes from the provided list in the captioning and also add



yours.” This approach works well for closed-source foundation models but performs extremely poorly on all open-source
models, most likely due to their smaller effective context window.

• Asking 309 independent questions, one per class, for every sample (multi-prompt).
This strategy avoids the context length limitation. Instead of including all class names at once, we ask 309 questions per
sample, each with the prompt: “Do you see or hear the following class ‘class’ in the video? Answer only with yes or no.”
While this pipeline yields higher classification scores, it is computationally expensive and still fails to fully capture the video
understanding capabilities of most open-source foundation models.

In conclusion, all the above strategies yield low performance (e.g., low F1 scores) and fail to reliably capture a model’s video
understanding. To address this, we adopt a hybrid approach: we use the zero-shot strategy for closed-source models and
introduce an LLM-assisted evaluation protocol for open-source foundation models.

Gemini models The Gemini models can handle long prompts very well. Thus, to generate classification predictions with
models from the Gemini family, we used a zero-shot evaluation protocol. Specifically, we provided the models with an input
prompt, a list of all class names in VGGSound separated with commas, and an input video file. We used the following text
template:

{CLASSES}
{VIDEO}
Annotate the video, explain in detail what is happening in the video. Use classes from
the provided list in the captioning and also add yours.

LLM-assisted evaluation We evaluated all other foundation models using LLM-assisted evaluation.
Building on similar approaches, 3 we employ Qwen3 [82] (32B quantised to 8 bits) as our LLM for evaluating the alignment
between model-generated outputs and the ground truth.
Specifically, for each sample, the open-source foundation models are asked the following questions depending on the input
modality:

A:
What actions are being performed in this audio, explain all sounds and actions in the
audio? Please provide a short answer.

V/AV:
What actions are being performed in this video, explain all sounds and actions in the
video? Please provide a short answer.

The generated answer (video/audio captioning text) and the target labels (list of classes separated with comma) are then both
supplied to the Qwen3 evaluator that receives the following system prompt.

LLM system prompt

You are an intelligent chatbot designed for evaluating the correctness of generative outputs
for classification pairs. Your task is to compare the predicted answer with the correct

answer and determine if they match meaningfully. Heres how you can accomplish the task:

- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.
- The correct answer, might contain multiple classes. Treat them independently and evaluate
the correctness of all them w.r.t predicted answer.

3We found the VideoLLaMA-2 appendix [21], PointLLM appendix [81], and the Unified-IO 2 code base https://github.com/allenai/
unified-io-2/blob/502ac4d81239f82c891a9f412b000c3c8d4e2946/t5x/examples/unified_io/data/prompt_dict.py
to be very useful.

https://github.com/allenai/unified-io-2/blob/502ac4d81239f82c891a9f412b000c3c8d4e2946/t5x/examples/unified_io/data/prompt_dict.py
https://github.com/allenai/unified-io-2/blob/502ac4d81239f82c891a9f412b000c3c8d4e2946/t5x/examples/unified_io/data/prompt_dict.py


Provide your evaluation only as a yes/no and score where the score is an integer value
between 0 and 5, with 5 indicating the highest meaningful match.

Please generate the response in the form of a Python dictionary string where names of
classes are keys and values are dictionary strings with keys pred and score, where value of
pred is a string of yes or no and value of score is in INTEGER, not STRING.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary
string. For example, your response should look like this:

{"male speech, man speaking": {"pred": "yes", "score": 4}, "playing banjo": {"pred": "no", "
score": 0}}

Example 1.

<Question>
Identify the main sounds present in the given audio clip with a few words.

<Correct Answers>
["cat caterwauling", "cat meowing"]

<Predicted Answer>
The main sounds present in the given audio clip are:

1. A ticking sound, possibly from a clock or timer.
2. A mechanical sound, which could be from a machine or device.
3. A human voice, which is speaking in the background.

Output: {"cat caterwauling": {"pred": "no", "score": 0}, "cat meowing": {"pred": "no", "
score": 0}}

Example 2.

<Question>
What actions are being performed in this audio, explain all sounds and actions in the audio?
Please provide a short answer.

<Correct Answers>
["cuckoo bird calling", "mynah bird singing", "bird chirping, tweeting"]

<Predicted Answer>
The audio features a cuckoo bird calling in the distance and some chirping and tweeting from
smaller birds.

Output: {"cuckoo bird calling": {"pred": "yes", "score": 5}, "mynah bird singing": {"pred":
"no", "score": 0}, "bird chirping, tweeting": {"pred": "no", "score": 5}}

Example 3.

<Question>
What actions are being performed in this video, explain all sounds and actions in the video?
Please provide a short answer.

<Correct Answers>
["male speech, man speaking", "playing hammond organ"]

<Predicted Answer>



Accuracy → µ ↑
Models a v av µa µv µA→V

CAV-MAE 59.05 45.57 65.08 4.71 4.84 0.67
DeepAVFusion 40.82 27.24 53.10 4.18 3.17 0.07
Equi-AV 46.68 24.84 50.08 6.91 5.51 0.98
AV-Siam 56.91 47.27 55.25 13.17 8.92 3.92

Gemini 1.5 Flash 0.31 22.12 23.60 1.51 4.17 0.09
Gemini 1.5 Pro 1.29 25.77 21.31 1.62 5.41 0.24
Gemini 2.0 Flash 5.70 20.29 19.39 2.50 4.77 0.63

VideoLLaMA 2 27.98 17.01 21.46 11.16 2.85 1.42
Unified-IO 2 32.28 20.24 52.40 4.88 3.42 0.87
PandaGPT 5.20 7.65 8.95 4.51 4.48 0.94
OLA 10.71 8.63 14.29 7.61 4.05 0.71

Figure 9. Performance of state-of-the-art models on
VGGSound. We report top-1 classification accuracy for different
input modalities (audio A, visual V, and audio and visual informa-
tion AV). µ is modality confusion metric defined in Sec. 5

Figure 10. Performance of state-of-the-art families on
VGGSound compared to VGGSounder. Radar plots illustrate
the average F1-scores across modalities for two model families:
“Foundation models” and “Embedding models” (Tab. 2).

The video shows a man who is playing regular piano and speaking with someone.

Output: {"male speech, man speaking": {"pred": "yes", "score": 5}, "playing hammond organ":
{"pred": "yes", "score": 3}}

User message template

<Question>
{QUESTION}

<Correct Answers>
{ANSWERS}

<Predicted Answer>
{CAPTION}

Qwen3 then outputs a Python-formatted dictionary mapping for each target class. The dictionary contains binary “pred”
decision (yes/no) and a nuanced confidence score (0–5), accommodating synonymy and paraphrasing.

{"male speech, man speaking": {"pred": "yes", "score": 5}, "playing hammond organ":
{"pred": "yes", "score": 3}}

This flexible scoring relaxes the strict label matching, yielding richer, semantically-aware assessments that better reflect
human judgment and are align with recent “LLM-as-judge” [34] paradigms that have demonstrated enhanced correlation
with human evaluators across a diverse set of tasks and domains.

D. Additional quantitative analysis
This appendix extends our quantitative analyses presented in Sec. 5.1 of the main paper, providing further insights into model
behaviour on both VGGSound and the newly introduced VGGSounder benchmark.

D.1. Model performance on VGGSound
We present the classification performance of state-of-the-art models on the original VGGSound test data in Fig. 9. We observe
that the multi-label hit accuracy on VGGSounder reported in Tab. 2 in the main paper significantly raises the performance
across all models. This suggests that the models predict classes that were not present in the original VGGSound labelling,
despite those being correct.



Subset Accuracy → F1 → Hit →
k Model a v av a v av a v AV

3

CAV-MAE 0.99 0.56 1.09 39.10 35.58 42.92 81.18 72.14 82.55
DeepAVFusion 0.22 0.08 0.68 28.07 22.43 37.36 65.15 50.86 74.75
Equi-AV 0.55 0.24 0.34 33.50 22.78 34.06 73.82 48.13 70.78
AV-Siam 0.83 0.77 0.74 37.36 37.05 40.91 79.32 73.21 79.83

5

CAV-MAE 0.04 0.04 0.03 35.14 30.79 36.00 87.04 78.73 87.64
DeepAVFusion 0.00 0.00 0.00 24.91 19.48 31.06 72.24 58.48 80.38
Equi-AV 0.01 0.01 0.00 30.06 20.44 28.62 80.64 55.67 77.09
AV-Siam 0.02 0.04 0.02 33.13 31.88 34.67 84.81 79.57 85.53

10

CAV-MAE 0.00 0.00 0.00 25.61 21.66 24.36 91.64 85.27 92.01
DeepAVFusion 0.00 0.00 0.00 18.36 14.23 21.06 80.35 67.87 85.70
Equi-AV 0.00 0.00 0.00 22.39 15.24 19.84 87.41 65.49 83.77
AV-Siam 0.00 0.00 0.00 24.15 22.12 23.94 90.11 85.86 90.99

Table 7. Audio-visual video classification results on VGGSounder for k→{3, 5, 10}. The table is vertically grouped by k. Within each
block, the four models are compared across the three metrics and input modalities.

Fig. 10 further compares the averaged F1-scores between the “Foundation model” and “Embedding model” families, high-
lighting that evaluations on the original VGGSound consistently underestimate model performance across all modalities
when compared to evaluations on VGGSounder.

D.2. Co-occurrence matrix on VGGSound

Figure 11. Co-occurrence counts among a subset of VGGSound classes,
estimated on the VGGSound test set by the CAV-MAE model. Each cell
indicates how frequently two classes appear together, highlighting labels
that share overlapping acoustic cues (e.g., playing drum kit and
playing bass drum ). Best viewed zoomed in on a screen.

To further illustrate the issue of class overlap de-
scribed in Sec. 3 of our paper, we include an anal-
ysis of class co-occurrences in predictions by the
CAV-MAE model [33]. Specifically, we provide
a co-occurrence matrix highlighting frequent si-
multaneous predictions of certain classes. No-
tably, labels such as playing drum kit and
playing bass drum are frequently predicted
together, as they are not mutually exclusive. This
analysis supports our identification of overlap-
ping classes as a key limitation in the original
VGGSound annotations and demonstrates the need
for explicitly multi-label approaches in video clas-
sification tasks.

D.3. Classification results for other k

Tab. 7 extends the evaluation presented in the main
paper by showing multi-label video classification
results on VGGSounder for varying numbers of
top-k predictions, specifically for k ↓ {3, 5, 10}.
These additional results offer deeper insights into
how model performance changes with an increas-
ing number of predictions. Specifically, one can
notice the opposite behaviour between the F1-
score (goes down with k) and the Hit score (in-
creases with k).

D.4. Performance on subsets of VGGSounder

To comprehensively evaluate model robustness in the presence of common confounders highlighted in Sec. 3 (i.e. meta-labels:
background music, static images, and voice over), we present additional evaluations on distinct subsets of VGGSounder.



Specifically, Appendix D.4 and Tabs. 9 to 13 display the performance of state-of-the-art models on subsets only containing or
fully excluding the meta-labels. These analyses confirm the importance of accounting for modality-specific and meta-label
influences.

Impact of background music

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 10.80 19.17 23.84 31.03 31.29 38.60 17.83 22.26 55.96 44.57 54.02 4.26 6.92 0.87
DeepAVFusion 8.15 9.48 20.66 21.66 16.40 33.05 12.68 8.27 39.02 23.32 46.18 2.52 3.32 0.09
Equi-AV 9.11 10.11 19.70 25.33 17.86 32.13 14.75 11.52 45.67 25.44 44.98 5.39 6.09 1.09
AV-Siam 10.46 18.50 21.31 29.55 31.00 34.31 16.53 22.65 53.28 44.15 48.02 10.18 8.83 3.70

Gemini 1.5 Flash 1.15 13.91 14.75 13.31 34.57 38.36 11.49 22.10 30.47 44.24 53.50 11.53 3.65 0.78
Gemini 1.5 Pro 1.90 20.84 20.75 17.40 46.04 47.93 13.68 27.50 33.65 62.36 67.51 3.91 3.96 0.61
Gemini 2.0 Flash 1.08 11.32 10.44 11.33 32.14 32.97 9.84 21.84 18.62 39.81 43.11 2.31 4.39 0.83

VideoLLaMA 2 11.24 18.63 22.66 36.43 43.18 46.81 23.97 33.41 53.86 43.65 48.37 15.27 5.35 2.83
Unified-IO 2 9.11 13.45 24.49 28.90 29.07 44.69 20.77 22.97 42.55 28.82 52.24 5.92 5.87 1.57
PandaGPT 1.86 4.64 5.79 12.75 17.64 18.11 8.65 16.09 14.96 15.50 15.18 6.87 5.70 2.22
OLA 8.53 9.77 19.18 35.87 25.44 43.61 29.25 17.17 44.35 23.43 44.85 11.74 7.39 1.70

Table 8. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing background music.
Similar to Table 1 in the main paper, we report multi-label classification metrics (subset accuracy, F1-score, Hit accuracy, modality
confusion (µ) for audio- a(A), visual - v(V ), audio-visual - av(AV ), audio-only - a(A¬V ) and video-only - v(V ¬A) inputs.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 13.19 19.23 24.49 34.46 34.91 42.62 13.94 19.00 62.29 53.44 64.17 3.58 6.43 0.77
DeepAVFusion 10.19 11.10 21.53 25.31 21.29 37.35 10.37 10.55 45.77 32.61 56.27 3.74 3.93 0.17
Equi-AV 11.60 10.52 20.00 29.39 20.42 34.69 12.55 10.65 53.12 31.26 52.24 6.97 7.13 1.38
AV-Siam 12.79 19.75 22.83 33.30 35.41 39.43 12.90 18.21 60.19 54.20 59.36 9.36 8.80 3.58

Gemini 1.5 Flash 1.78 14.44 16.44 14.49 36.98 42.52 15.61 21.61 32.73 47.36 59.10 10.22 4.25 0.77
Gemini 1.5 Pro 3.05 20.86 22.53 19.26 49.73 53.74 17.73 22.90 35.03 69.23 75.42 2.09 4.85 0.57
Gemini 2.0 Flash 1.85 12.54 12.69 11.80 34.08 36.45 6.19 18.90 18.51 43.83 47.72 2.39 5.43 1.00

VideoLLaMA 2 12.86 19.85 24.47 38.87 47.82 52.35 20.34 28.08 58.91 52.02 59.80 12.72 5.46 2.95
Unified-IO 2 11.94 11.56 25.61 35.31 27.92 48.89 21.38 16.53 54.39 31.05 65.11 8.70 5.16 1.79
PandaGPT 3.19 4.19 5.46 18.73 18.56 20.85 16.82 14.40 21.08 17.01 18.82 7.59 5.90 2.47
OLA 14.11 8.69 18.19 47.70 24.85 46.48 40.44 13.45 59.05 24.57 51.51 15.47 6.80 2.49

Table 9. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing background music

A side-by-side inspection of the two subsets (Tab.D.4 vs. Tab.9) reveals several interesting points.

(i) Universal but modality-specific gains. Every method improves in terms of F1 and Hit scores when the soundtrack is
removed, that is especially clear for the audio input modality: for the embedding family we register jumps of up to +5% in
F1 for both audio and visual inputs. Consequently, joint audio–visual inputs rise in performance only slightly (+3–5%).

(ii) Same trend for foundation models, but with caveats. Foundation checkpoints with a meaningful audio encoder echo the
pattern (Unified-IO2 +7%, Ola +12%); in contrast, the Gemini family remains audio-weak, suggesting that their publicly
released models rely heavily on vision.

(iii) Intuition. Background music tends to mask class-specific foreground sounds; once that mask is removed the audio
encoder can finally “hear” discriminative cues, whereas vision—being agnostic to the soundtrack—is affected only by the
changed clip mix. With noisy audio, every model relies more on the V modality as a safety net, which explains why their
baseline performance remains respectable despite the severe audio corruption.

Altogether, these observations confirm that background music constitutes a hard confounder, forcing models to rely on vision.



Impact of static images

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 22.13 19.48 27.42 38.24 27.21 37.62 35.18 15.03 61.20 34.74 47.28 4.22 6.85 0.35
DeepAVFusion 15.98 10.96 23.20 28.65 15.80 31.50 26.43 6.33 45.89 20.21 39.59 4.24 3.87 0.00
Equi-AV 19.00 10.39 22.50 32.59 14.24 31.33 30.14 9.25 52.15 18.18 39.37 5.62 4.22 0.35
AV-Siam 22.04 19.81 24.25 37.46 28.10 34.27 33.61 13.87 59.95 35.88 43.06 10.72 7.91 2.64

Gemini 1.5 Flash 1.43 13.47 15.64 9.35 29.51 33.27 8.15 18.63 20.25 30.19 40.60 10.90 4.57 0.88
Gemini 1.5 Pro 2.33 22.08 23.37 14.32 42.50 44.89 12.52 24.44 24.19 51.30 57.47 3.87 5.45 0.53
Gemini 2.0 Flash 3.85 10.88 13.88 13.54 26.91 31.64 12.82 13.75 19.53 29.87 38.31 1.93 3.87 0.88

VideoLLaMA 2 19.00 18.18 23.73 42.36 37.90 43.22 39.41 27.54 56.45 32.31 40.60 15.47 5.10 2.64
Unified-IO 2 17.92 9.58 28.47 35.87 22.12 45.95 33.45 15.93 47.49 18.34 47.80 7.38 3.34 1.05
PandaGPT 3.32 4.87 5.27 14.15 13.71 15.32 12.75 11.01 14.78 11.36 11.78 8.96 5.62 2.11
OLA 14.87 8.60 18.28 37.80 19.72 38.88 33.53 10.53 42.29 15.58 34.97 15.99 5.27 1.41

Table 10. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing static images

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 11.98 19.21 24.24 33.49 34.60 42.13 12.31 20.02 61.05 52.70 63.11 3.67 6.50 0.81
DeepAVFusion 9.30 10.81 21.30 24.31 20.67 36.84 8.96 10.33 44.34 31.48 55.19 3.50 3.82 0.16
Equi-AV 10.49 10.45 19.84 28.33 20.23 34.39 10.91 10.94 51.64 30.81 51.51 6.75 7.08 1.37
AV-Siam 11.57 19.52 22.49 32.24 34.95 38.76 11.26 19.51 58.76 53.23 58.06 9.44 8.85 3.64

Gemini 1.5 Flash 1.68 14.39 16.17 14.62 36.82 42.14 15.43 21.92 33.25 47.59 58.92 10.42 4.13 0.77
Gemini 1.5 Pro 2.87 20.80 22.17 19.22 49.36 53.07 17.24 23.81 35.60 68.82 74.80 2.34 4.66 0.58
Gemini 2.0 Flash 1.53 12.40 12.23 11.58 34.02 36.02 6.43 19.91 18.45 43.75 47.31 2.39 5.31 0.97

VideoLLaMA 2 12.04 19.70 24.18 38.13 47.41 51.78 18.90 29.21 58.05 51.42 58.61 13.06 5.46 2.94
Unified-IO 2 10.88 12.00 25.28 33.99 28.31 48.33 19.64 17.98 52.46 31.24 63.57 8.26 5.37 1.78
PandaGPT 2.91 4.24 5.53 17.83 18.58 20.60 15.01 15.00 20.29 17.00 18.49 7.40 5.87 2.44
OLA 12.88 8.89 18.36 46.03 25.12 46.27 38.29 14.45 57.30 24.78 51.05 14.78 6.97 2.40

Table 11. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing static images

A side-by-side inspection of the “static image” split (Tab.,10) and its complement (Tab.,11) shows four salient effects.

(i) Vision takes the hit, audio steps up. Across the classic embedding models, the visual branch loses on average 6–7%
absolute in F1, while using audio inputs results in gains +3–6%. The same holds true for the joint audio-visual. Hit scores
mirror the trend: Hit for visual inputs plunges by up to 20%, whereas Hit for audio inputs remains flat or edges upward for
most of teh models.

(ii) Foundation models react unevenly. VideoLLaMA2 loses 8% on vision yet gains 3% on audio—whereas the vision-
centric Gemini family suffers a broad decline, unable to compensate for the poor visual signal.

(iii) Intuition. Static clips provide far less discriminative visual evidence than genuine video, reducing motion and viewpoint
cues. The audio track, in contrast, is untouched; consequently, models shift their reliance toward the acoustic channel,
explaining the systematic audio gain and the parallel vision loss.

(iv) Modality-confusion drifts upward. With vision degraded, many architectures become more uncertain about which modal-
ity to trust; a few (AV-Siam) even over-correct, raising µA by +1.8 while slightly easing µV .

In sum, static imagery acts as the visual analogue to background music: it removes discriminative content in one modality
(vision) and forces models to lean on the other (audio), exposing how well a model can rebalance modalities.

Impact of voice-over narration



Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 2.78 14.34 17.38 26.68 28.36 35.37 11.19 25.50 51.65 43.55 53.62 4.21 7.06 0.65
DeepAVFusion 2.02 9.41 15.33 16.79 17.78 29.13 6.51 13.99 32.50 27.34 44.23 2.69 3.79 0.18
Equi-AV 3.51 7.75 14.53 22.45 15.44 28.14 9.62 10.74 43.45 23.71 42.65 7.47 6.35 1.07
AV-Siam 2.73 13.94 15.66 25.72 28.51 31.11 9.56 26.85 49.79 43.78 47.15 10.97 8.96 3.50

Gemini 1.5 Flash 5.26 9.43 10.85 29.43 30.61 34.01 27.55 23.61 63.71 40.02 48.28 22.18 4.57 1.36
Gemini 1.5 Pro 7.73 17.70 16.07 34.58 46.22 50.84 29.26 27.76 68.30 65.70 75.50 4.15 4.27 0.95
Gemini 2.0 Flash 0.72 7.40 8.36 11.87 27.47 29.85 6.10 21.62 19.95 36.38 40.57 2.79 5.81 1.30

VideoLLaMA 2 6.34 16.08 19.40 34.98 42.76 47.72 21.74 36.14 54.43 47.60 54.69 13.58 5.40 2.43
Unified-IO 2 4.69 9.08 18.15 29.81 24.80 40.94 23.17 21.65 48.61 27.13 53.44 9.49 5.16 2.02
PandaGPT 3.66 4.28 4.86 20.96 18.58 18.92 19.07 17.73 26.75 17.47 18.03 9.79 6.52 3.32
OLA 15.46 7.06 16.13 54.14 23.48 48.53 47.31 16.08 76.08 24.64 57.53 16.19 4.98 2.85

Table 12. Audio-visual video classification results on the subset of VGGSounder that is labelled as containing voice over narrations

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 14.18 19.92 25.38 34.92 35.19 42.94 15.67 18.90 62.44 53.10 63.70 3.62 6.44 0.81
DeepAVFusion 10.94 11.02 22.26 25.84 20.89 37.77 11.84 9.55 46.21 31.52 56.03 3.65 3.83 0.15
Equi-AV 12.23 10.83 20.73 29.58 20.67 35.18 13.80 10.84 52.88 31.18 52.19 6.59 7.04 1.37
AV-Siam 13.74 20.34 23.56 33.66 35.59 39.70 14.66 18.09 60.17 53.70 58.90 9.29 8.79 3.61

Gemini 1.5 Flash 1.14 15.06 16.91 12.18 37.42 42.94 12.38 21.45 27.71 47.79 59.56 8.76 4.09 0.69
Gemini 1.5 Pro 2.11 21.31 23.11 16.42 49.55 53.10 14.29 23.32 29.87 68.38 73.86 2.15 4.75 0.53
Gemini 2.0 Flash 1.84 13.04 12.87 11.68 34.66 36.73 7.38 19.23 18.32 44.10 47.84 2.31 5.17 0.92

VideoLLaMA 2 13.45 20.15 24.84 38.95 47.72 52.06 21.18 28.23 58.44 50.99 58.30 13.10 5.45 3.00
Unified-IO 2 12.37 12.29 26.46 34.79 28.58 49.28 20.85 17.37 52.60 31.17 64.26 8.05 5.30 1.71
PandaGPT 2.83 4.27 5.61 17.05 18.39 20.65 13.90 14.34 18.89 16.65 18.23 7.14 5.77 2.30
OLA 12.67 9.14 18.68 44.05 25.16 45.64 35.76 13.96 53.30 24.33 49.35 14.64 7.18 2.29

Table 13. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing voice over narra-
tions

Considering the “voice-over” split (Tab.,12) with its complement (Tab.,13) exposes a two–way story that depends on how
each model treats speech.

(i) Embedding models are confused. For all four embedding models, results when using audio inputs jump by roughly
+5–10% in F1 when the narration track is removed, and Hit for audio climbs in parallel. This confirms that spoken commen-
tary masks class-specific sounds. However, once silenced, the models can finally “hear” the underlying events, again, similar
to the background music meta-class.

(ii) Reduced performance for speech-centric foundation models. Gemini 1.5 and PandaGPT fail when narration disappears:
F1 for audio inputs plunges by around ↔17% and Hit for audio inputs drops by up to 39%. Our intuition is, that these models
exploit the speech content as a shortcut.

(iii) Middle ground for broad-coverage LMMs. Unified-IO 2 and VideoLLaMA-2 are between the two extremes: they register
a moderate audio lift (+4–5%) and a small visual bump (+1–2%), yielding a ,+1–, 8% improvement in terms of F1 score for
audio-visual inputs. We hypothesise that their balanced training helps them survive the removal of speech while still profiting
from the clearer acoustic scene.

(iv) Modality-confusion µ reacts in both directions. For speech-reliant models, clearer acoustics reduce uncertainty, whereas
for event-focused encoders (trained on VGGSound) it slightly rises because the freshly revealing audio now dominates the
fusion gate.

Taken together, voice-over narration acts as the mirror image of background music: it can be a helpful shortcut for speech-



aware foundation models, yet a destructive mask for sound classifiers trained on VGGSound.

Confounder–free subset

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a(A¬V ) v(V ¬A) a v av µA µV µA→V

CAV-MAE 13.51 19.53 24.90 34.80 35.59 43.21 11.71 18.99 62.87 54.68 65.26 3.52 6.42 0.80
DeepAVFusion 10.56 11.04 21.84 25.86 21.50 38.01 8.98 10.27 46.74 33.04 57.43 3.86 3.90 0.16
Equi-AV 11.75 10.73 20.19 29.57 20.97 35.17 10.67 10.77 53.42 32.22 53.11 6.85 7.31 1.42
AV-Siam 13.02 20.08 23.21 33.58 36.03 39.99 10.82 17.60 60.67 55.35 60.39 9.29 8.86 3.65

Gemini 1.5 Flash 1.27 14.93 16.90 12.86 37.67 43.46 14.05 21.55 29.32 48.58 60.70 8.79 4.13 0.71
Gemini 1.5 Pro 2.35 20.86 22.97 17.26 50.01 53.89 15.69 22.27 31.43 69.78 75.44 1.97 4.80 0.55
Gemini 2.0 Flash 1.85 13.01 12.93 11.73 34.83 37.09 5.89 18.93 18.38 44.86 48.56 2.39 5.36 0.95

VideoLLaMA 2 13.02 20.08 24.94 38.87 48.36 52.84 17.78 27.52 59.11 52.65 60.42 12.61 5.37 2.97
Unified-IO 2 11.94 11.76 25.96 35.18 28.25 49.42 18.84 16.01 54.07 31.62 66.07 8.41 5.24 1.75
PandaGPT 3.00 4.09 5.43 18.21 18.57 21.08 16.00 14.68 20.34 17.06 18.98 7.17 5.76 2.34
OLA 13.38 8.86 18.24 46.34 25.07 46.10 38.24 13.13 56.92 24.78 50.88 15.23 7.08 2.46

Table 14. Audio-visual video classification results on the subset of VGGSounder that is labelled as not containing background music,
static images, or voice over narrations

The split that simultaneously excludes background music, static images, and voice-over narration (Tab.,14) serves as an
upper-bound reference and reveals how each system performs when no major nuisance factor is present.

Removing all three meta-classes unlocks the highest scores yet observed and sharpens modality agreement.

D.5. Ablation study for additional labels in VGGSounder

In this section, we conduct an ablation study to quantify the benefits introduced by different components of our annotation
pipeline described in Section 3. Specifically, we compare model performance on three variants of ground-truth labels:
(a) Original VGGSound labels extended only with automatically added synonymous and superclass labels, (b) Original
VGGSound labels extended exclusively with human annotations, (c) Original VGGSound labels extended comprehensively
with both automatically added labels and human annotations (VGGSounder).
Detailed performance results in Tab. 16 and Tab. 17 demonstrate a consistent improvement across all evaluation metrics
when employing the complete set of annotations (scenario c). This clearly illustrates the reduction in false-positive identifi-
cations and improved accuracy achieved through our annotation pipeline. This again highlights the importance of combining
automated processes with thorough human verification in creating robust benchmarks for evaluating audio-visual models.
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models with help from ASK. DZ evaluated all models with support from ASK and input from TW and AP. TW, ASK, DZ,
and AP wrote the manuscript with input from WB and MB. TW and DZ created the figures with feedback from ASK, AP,
and WB. MB provided helpful feedback throughout the project.



Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA→V

Gemini 1.5 Flash 0.31 22.12 23.60 1.71 33.15 35.94 2.98 31.83 41.23 1.51 4.17 0.09
Gemini 1.5 Pro 1.29 25.77 21.31 4.43 36.41 35.62 6.11 41.72 45.70 1.62 5.41 0.24
Gemini 2.0 Flash 5.70 20.29 19.39 9.95 32.34 33.91 9.49 30.55 35.31 2.50 4.77 0.63

VideoLLaMA 2 27.98 17.01 21.46 41.32 31.46 36.80 30.05 22.72 27.90 11.16 2.85 1.42
Unified-IO 2 32.28 20.24 52.40 43.71 33.84 64.06 33.71 22.84 54.20 4.88 3.42 0.87
PandaGPT 5.20 7.65 8.95 12.68 16.83 19.55 8.54 11.23 13.30 4.51 4.48 0.94
OLA 10.71 8.63 14.29 23.33 17.81 28.86 18.06 10.95 22.41 7.61 4.05 0.71

Table 15. Audio-visual video classification results on VGGSound + automatically added labels inputs.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA→V

Gemini 1.5 Flash 1.67 14.49 16.42 14.42 36.72 41.93 32.25 46.43 57.59 10.48 4.19 0.80
Gemini 1.5 Pro 2.86 21.32 22.59 19.17 49.14 52.85 34.72 67.24 73.33 2.43 4.76 0.58
Gemini 2.0 Flash 1.83 12.83 12.66 11.75 33.97 36.00 18.29 42.71 46.44 2.35 5.34 0.95

VideoLLaMA 2 12.81 20.91 25.96 38.62 48.37 53.25 56.94 50.21 57.36 13.04 5.48 2.87
Unified-IO 2 11.58 12.09 26.31 34.35 28.63 49.79 51.44 30.52 62.38 8.15 5.32 1.74
PandaGPT 3.01 4.80 6.23 17.74 18.87 20.95 19.68 16.53 18.04 7.40 5.81 2.39
OLA 13.53 9.29 22.95 46.12 25.71 49.60 55.76 24.27 50.03 14.59 6.95 2.34

Table 16. Audio-visual video classification results on VGGSound + human annotations.

Subset Accuracy ↑ F1 ↑ Hit ↑ µ ↓

Model a v av a v av a v av µA µV µA→V

Gemini 1.5 Flash 1.78 14.44 16.44 14.49 36.98 42.52 32.73 47.36 59.10 10.22 4.25 0.77
Gemini 1.5 Pro 3.05 20.86 22.53 19.26 49.73 53.74 35.03 69.23 75.42 2.09 4.85 0.57
Gemini 2.0 Flash 1.85 12.54 12.69 11.80 34.08 36.45 18.51 43.83 47.72 2.39 5.43 1.00

VideoLLaMA 2 12.86 19.85 24.47 38.87 47.82 52.35 58.91 52.02 59.80 12.72 5.46 2.95
Unified-IO 2 11.94 11.56 25.61 35.31 27.92 48.89 54.39 31.05 65.11 8.70 5.16 1.79
PandaGPT 3.19 4.19 5.46 18.73 18.56 20.85 21.08 17.01 18.82 7.59 5.90 2.47
OLA 14.11 8.69 18.19 47.70 24.85 46.48 59.05 24.57 51.51 15.47 6.80 2.49

Table 17. Audio-visual video classification results on VGGSound + human annotations + automatically added labels
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