FlareGS: 4D Flare Removal using Gaussian Splatting for Urban Scenes
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Supplementary Material
A. Ablation Study
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Figure A. Qualitative ablation showing the impact of depth (Li-
DAR) as an auxiliary input.

As shown in Fig. A, incorporating LiDAR (depth) in-
formation alongside RGB input significantly improves re-
construction in regions heavily obstructed by flare artifacts.
Depth provides a flare-invariant prior, enabling the model to
better infer occluded object boundaries.
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Figure B. Extreme flare case where RGB input lacks information,
but depth preserves structural cues.

In Fig. B, the input RGB frame is synthetically cor-
rupted with a large, opaque ghost flare for stress testing.
While most scene content is visually obscured, the LiDAR
modality preserves geometric contours of occluded struc-
tures such as the tree. Notably, a streetlight present in the
RGB input—positioned in front of the tree—is absent in the
LiDAR signal. Consequently, the Uformer output recon-
structs the tree’s structure but not the streetlight, suggesting
that the model relies on flare-free depth cues for structural
inference under extreme visual degradation.
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Light Source R G B
Cyan Atmos. 0-95 158255 160-255
Warm Street 255 69-255 0
Red Emergency 178-255 0-99 0-71
Cool Blue 0-135 0-206 180-255
Green Neon 0-124 205-255 0-154
Purple Atmos. 128221 0-160 128-226

Table A. Flare color presets used for synthetic augmentation. Each
RGB range corresponds to a common light source encountered in
nighttime driving scenes.

B. Flare Color Presets

To simulate realistic nighttime driving conditions, we define
a set of flare color presets corresponding to common urban
light sources. Each preset specifies a range of RGB values
designed to emulate the characteristic hues of real-world il-
luminants. The Cyan Atmospheric preset captures ambi-
ent cool-toned haze, while Warm Street represents sodium-
vapor or halogen streetlights with their distinctive orange
glow. Red Emergency models flares from traffic signals or
emergency vehicles, and Cool Blue emulates cooler flares
often seen in sensor or headlight reflections. Green Neon
is inspired by traffic signage and urban lighting, whereas
Purple Atmospheric introduces magenta-violet hues to di-
versify the simulation space. These curated presets allow
us to generate diverse and visually plausible flare artifacts
during training (see Table A).

C. Loss Functions in FlareGS

We employ several auxiliary loss [1] functions within the
FlareGS pipeline to regularize optimization and improve
structural fidelity, especially in dynamic urban scenes.

Opacity Entropy Regularization. To encourage sharper
opacity boundaries and suppress over-smoothed regions, we



apply an entropy-based regularization:

Eopacity =-E [d log(&)} 5 (1)
where & = clamp(opacity, e, 1 — ). )

Inverse Depth Smoothness Loss. We impose spatial
smoothness on inverse depth while preserving edges guided
by image gradients:
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Affine Regularization Loss. We regularize the affine
transformations to remain close to the identity:

£afﬁne: ||A_I||1 + HtHl7 (4)

where A € R3*3 and t € R? denote the affine rotation and
translation, respectively.

Dynamic Region Reconstruction Loss. To improve fi-
delity in dynamic regions (e.g., moving vehicles or pedes-
trians), we apply an L1 loss restricted to high-opacity dy-
namic regions:

Loy = || e — Trae |+ forpixels where dgyn > 7.
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Gaussian Prior Regularization. We regularize per-class
Gaussian components (e.g., vehicles, roads, sky) using
category-specific priors:

Loass = Y _ L), 6)
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where Lr(ecg) is computed independently for each semantic
class c.

Training Setup. Both Uformer and FlareGS were trained
using an NVIDIA RTX 4090 GPU. Uformer was trained for
100 epochs, and FlareGS for 30,000 iterations.

Uformer Loss Weights. The loss for Uformer combines
reconstruction, perceptual, adversarial, and feature losses:
Azt = 100, Arecons = 1, Aygg = 10, Aggw = 0.01, and
>\feat =1

FlareGS Loss Weights. The total loss is a weighted sum of
photometric, geometric, and perceptual objectives: Arp =
0.8, >\ssim =0.2, /\deplh = 0.01, )\opacily = 0.05, /\inv—depth =
0.0, Aatfine = 0.00001, Afigre = 0.8, AL; = 100, Arecons = 1,
Avge = 10, Aagy = 0.01, and Agey = 1.

References

[1] Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio,
Janick Martinez Esturo, Boris Ivanovic, Or Litany, Zan Go-
jeic, Sanja Fidler, Marco Pavone, Li Song, and Yue Wang.
Omnire: Omni urban scene reconstruction. In The Thirteenth
International Conference on Learning Representations, 2025.
1



