
Fourier Domain Adaptation for Traffic Light Detection in Adverse Weather*

Supplementary Material

In this appendix, we provide supplementary material de-
tailing the hyperparameters used in our experiments, along
with an in-depth analysis of the extensive experimentation
conducted to determine their optimal selection. Addition-
ally, we present specifics of the benchmarking on clean im-
ages and tested on images affected by adverse weather con-
ditions without applying FDA.

0.1. Datasets
The datasets LISA and S2TLD were chosen since LISA
supplies a rich night-time split, and S2TLD adds high-
resolution images of very small lights under a permissive
MIT licence. Together, they cover our key corner-cases,
low-light scenes, and tiny targets, without extra relabelling
or preprocessing. Whereas DriveU and Bosch BSTLD were
discarded since, DriveU encodes 344 composite classes
that combine colour with arrows, pictograms, and relevance
flags; only a handful map directly to the simple colour states
we need, so most would have to be merged or discarded.
Bosch BSTLD, meanwhile, is converted from 12-bit sensor
data to 8-bit RGB, a step that can introduce colour artefacts
and risk degrading FDA, which depends on accurate pixel
intensities.

0.2. Hyperparameter Tuning

Table 1. Comparisons of different models when trained on Ds

(clean, β=0) data but inferred on the Dt (foggy and rainy) data.

Model Class Precision Recall mAP50 mAP50-95
YOLOv10n All 0.86 0.691 0.774 0.46

Red 0.891 0.724 0.821 0.53
Green 0.873 0.651 0.745 0.445
Yellow 0.815 0.698 0.755 0.405

YOLOv8m All 0.887 0.804 0.873 0.564
Red 0.937 0.825 0.91 0.641

Green 0.886 0.76 0.851 0.553
Yellow 0.839 0.828 0.859 0.499

YOLOv6m All 0.82 0.757 0.809 0.52
Red 0.914 0.793 0.877 0.61

Green 0.875 0.719 0.819 0.529
Yellow 0.671 0.758 0.729 0.422

YOLOv5m All 0.856 0.682 0.766 0.481
Red 0.915 0.687 0.8147 0.549

Green 0.87 0.658 0.76 0.484
Yellow 0.784 0.7 0.722 0.41

In order to increase the proportion of yellow images in
the merged dataset, several augmentations were applied; as
shown in Fig. 1 and Table 2, for the random brightness con-

trast adjustment, brightness and contrast limits were set to
0.2 (brightness_limit=0.2, contrast_limit=0.2) to modulate
the image intensity dynamically. The affine transforma-
tion encompasses scaling, translation, rotation, and shear-
ing. The affine transformation included a shear range set be-
tween 0 and 20 degrees (shear=(0, 20)). The blur augmen-
tation had a blur limit with a kernel size 7 (blur_limit=7).

As discussed in Section ??, Fig. 3 illustrates findings
which justify the choice of yellow lights as 13%. At 9%,
YOLOv5 exhibits underfitting, as indicated by a notice-
able gap between training and validation mAPs and overall
lower performance compared to other models. This sug-
gests that the limited data volume was insufficient for the
model to capture the necessary distributional features, espe-
cially given its relatively smaller capacity compared to later
versions like YOLOv8 and YOLOv10. Increasing to 13%
allowed YOLOv5 to generalize better and close the perfor-
mance gap, justifying its use in our final training pipeline.
The slight performance dip at 13% is not necessarily indica-
tive of model degradation. This behavior can arise due to
increased data variance, introducing harder or noisier sam-
ples into the training set. The trade-off between marginal
mAP fluctuations and improved real-world resilience is a
well-documented phenomenon in deep learning. Therefore,
selecting 13% strikes a practical balance — it compensates
for underfitting in lighter models like YOLOv5 and intro-
duces diversity that benefits overall generalization, even if
it momentarily lowers validation mAP on a fixed subset.
Such effects are acceptable in deployment-focused applica-
tions where robustness outweigh

As mentioned in Section ??, the hyperparameters em-
ployed for addition of fog are λ and Airlight (γ). The
amount of fog in an image is determined by λ, while γ
controls the brightness of the foggy image. In the case of
rain addition, the hyperparameters include noise, rain_len,
rain_angle, rain_thickness, and α. Noise determines the
density of rain in the image; rain_len specifies the length
of each raindrop; rain_angle dictates the angle of the rain-
drops relative to the vertical axis; rain_thickness defines the
thickness of each raindrop; and α sets the opacity of the
raindrops. After extensive experimentation, we believe the
suitable set of hyperparameters to be λ = 1, γ = 150,
noise = 500, rain_len = [50,60], rain_angle = [-50,51],
rain_thickness = 3, and α = 0.7. Examples of these hy-
perparameters with different values can be seen in Fig. 2.

Original Horizontal Flip Random Brightness
Contrast Affine Blur

Figure 1. A visualization of the various methods used to augment images. The first image from the left is unaltered, the second is
horizontally flipped, the third’s contrast and brightness have been altered, the fourth has an affine transformation, and the last has been
blurred. The hyperparameters for these augmentations are mentioned in Table 2 .

 Noise = 500 Noise = 600 Noise = 700

λ = 1 , γ = 150 λ = 2 , γ = 200 λ = 3 , γ = 250

i

Figure 2. The first row of images has rain added to them, and the second row has fog added to them. As evident from the images above,
the set of hyperparameters, namely Noise=500, λ=1, and γ=150, result in a realistic and balanced effect.

Table 2. The list of augmentations applied to address the class
imbalance and the hyperparameters employed in the process. All
these hyperparameters were used with a probability of 0.5.

Augmentation Hyperparameters
Horizontal Flip p=0.5

Random Brightness Contrast brightness_limit=0.2,
contrast_limit=0.2

Affine shear=(0,20)
Blur blur_limit=7

0.3. Benchmarking

This section provides a summary of the different YOLO
models used in the experiments, highlighting their architec-
tural differences and unique characteristics.

YOLOv5 starts with a strided convolution layer to re-

duce memory and computational costs, and the SPPF (Spa-
tial Pyramid Pooling Fast) layer accelerates computation by
pooling multi-scale features into a fixed-size feature map.

YOLOv6 introduced a new backbone called Efficien-
tRep [3], built on RepVGG [1], which offered greater par-
allelism than previous YOLO backbones. The network’s
neck used a PAN (Path Aggregation Network) structure, en-
hanced with RepBlocks or CSPStackRep Blocks for larger
models. This redesigned backbone and neck significantly
improved the model’s efficiency and adaptability.

YOLOv8 retains a backbone architecture similar
to YOLOv5 but introduces significant changes to the
CSPLayer, now called the C2f module. This module, which
stands for "cross-stage partial bottleneck with two convolu-
tions," effectively merges high-level features with contex-
tual information, resulting in improved detection accuracy.

YOLOv10 introduces a lightweight classification head

Figure 3. Benchmarked results of various models on various per-
centages of yellow lights. It is observed that all models converge
at 13%, indicating that the class imbalance is abated. Here, the
percentage on the x-axis refers to the percentage of yellow lights
in the merged dataset.

with depth-wise separable convolutions to reduce compu-
tational overhead, Spatial-Channel Decoupled Downsam-
pling to minimize information loss, and Rank-Guided Block
Design for optimal parameter use. Accuracy is enhanced
through Large-Kernel Convolution for better feature extrac-
tion and Partial Self-Attention (PSA) for improved global
representation with minimal overhead. It also uses dual la-
bel assignments with a consistent matching metric, allowing
for rich supervision and efficient deployment without the
need for NMS, an integral component of previous YOLO
versions.

Each of these YOLO versions differs in its architectural
innovations and optimizations, catering to different aspects
of object detection challenges. All aforementioned models
were trained using the Adam optimizer [2] for 50 epochs on
the NVIDIA RTX A6000 GPU with a batch size of 32.

The models are benchmarked by training them on the
clean images without rain or fog and testing them on the
images that have rain/fog in them. The results of this bench-
marking process, which highlight the impact of training on
clean images and testing on weather-degraded images, are
presented in Table 1.

0.4. Additional Results
In Tables 1 and 3, two scenarios are presented: (1) when
models are trained on Ds but tested on Dt, and (2) when
models are trained on Ds→t and evaluated on Dt, for which
the subplots are shown for representational purposes in the
main paper in Fig. ?? and the exact values for which are
mentioned in Table 3.

References
[1] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,

Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style

Table 3. Comparisons of results across models when trained on
Ds→t and inferred on Dt (rainy and foggy). All metrics are aver-
aged across the 3 classes.

Model Beta(β) Precision Recall mAP50 mAP50-95
YOLOv10n 0.15 0.911 0.85 0.927 0.617

0.1 0.903 0.83 0.903 0.58
0.05 0.935 0.923 0.964 0.682

YOLOv8m 0.15 0.933 0.923 0.956 0.674
0.1 0.927 0.877 0.927 0.633
0.05 0.882 0.693 0.767 0.495

YOLOv6m 0.15 0.914 0.856 0.914 0.585
0.1 0.890 0.772 0.843 0.516
0.05 0.932 0.919 0.954 0.654

YOLOv5m 0.15 0.926 0.878 0.928 0.621
0.1 0.887 0.765 0.826 0.532
0.05 0.850 0.646 0.724 0.439

convnets great again, 2021. 2
[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization, 2017. 3
[3] Kaiheng Weng, Xiangxiang Chu, Xiaoming Xu, Junshi

Huang, and Xiaoming Wei. Efficientrep: An efficient repvgg-
style convnets with hardware-aware neural network design.
arXiv preprint arXiv:2302.00386, 2023. 2

	Datasets
	Hyperparameter Tuning
	Benchmarking
	Additional Results

