
Interpretable Decision-Making for End-to-End Autonomous Driving

Supplementary Material

Mona Mirzaie Bodo Rosenhahn
Institute for Information Processing

Leibniz University Hannover, Germany

mirzaie@tnt.uni-hannover.de

In this supplementary document, we first analyze failure cases in challenging scenarios and discuss the underlying causes
(Sec. 1). Next, we present a detailed analysis of our model’s behavior through visualizations, including activation maps that
highlight key decision-making regions for critical traffic participants (Sec. 2). We then describe how interpretability metrics
and mask generation are applied in our evaluations (Sec. 3), and subsequently provide a quantitative analysis of concept-level
interpretability (Sec. 4). Finally, we conduct an ablation study to assess the impact of hyperparameter choices on model
performance (Sec. 5).

1. Failure Case Analysis
This section presents examples from Fig. 1 demonstrating scenarios that lead to lower Intersection over Union (IoU) and
Ground Truth Coverage (GTC) scores. Although our model successfully identifies relevant regions, the activation maps
do not always fully overlap with ground-truth bounding boxes, resulting in lower scores. This partial coverage results in
lower metric values, making it challenging to fully capture the interpretability advantages of our model based solely on these
metrics.

Figure 1. Example of Failure Cases. From left to right: heatmap of our model, heatmap binary mask, intersection of the bounding box
and heatmap binary mask, and heatmap of the reproduced TCP.

2. Comparative Analysis of Activation Maps
In this section, we present additional qualitative analyses of activation maps generated using EigenCam [4] for our proposed
model DTCP compared to the baseline TCP [5]. As depicted in Fig. 2 (a-g), DTCP effectively localizes attention on regions
critical for driving decisions, significantly enhancing interpretability. Detecting traffic lights, especially those situated at
higher and farther positions, is challenging due to their relatively small size in camera images. However, as illustrated in
Fig. 2 (a), DTCP effectively addresses this difficulty by accurately focusing its activation map within the bounding box of
distant traffic lights. Fig. 2 (b-c) illustrates that our model assigns significant attention to yellow traffic lights. Specifically,
in (c), upon recognizing the yellow traffic light, the model effectively identifies vehicles within the intersection in our driving
path as potential collision risks. As depicted in Fig. 2 (d), our model carefully monitors the surrounding environment during
turning maneuvers, proactively identifying potential risks from dynamic objects, such as cyclists (marked by a cyan bounding
box) or pedestrians, that could unexpectedly enter our driving path. Fig. 2 (e-g) demonstrates that our model remains highly



vigilant in detecting unexpected situations, identifying hazards such as vehicles and pedestrians that violate traffic rules or
run red lights, thereby reducing potential collision risks.
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Figure 2. Comparison of activation maps. Left: Heatmap of our model DTCP; right: heatmap of the reproduced TCP. Our model
achieves superior performance by activating key regions relevant to driving decisions, thus enhancing interpretability.

3. Mask Generation and Interpretability Metrics

For measuring interpretability using Shared Interest metrics (IoU, GTC, SC) [1], we generate binary masks from object
bounding boxes and our model’s heatmap, as illustrated in Fig. 3. Ground-truth bounding boxes are created for categories
most likely involved in infractions—pedestrians, cyclists, vehicles, and traffic lights.
For a ground-truth set (G) and a saliency set (S), Shared Interest metrics are defined as:

IoU =
|G ∩ S|
|G ∪ S|

(1)

GTC =
|G ∩ S|
|G|

(2)



Figure 3. Example of Generated Binary Mask. From left to right: heatmap with overlapping bounding boxes, binary mask derived from
the heatmap, and binary mask of the bounding boxes.

SC =
|G ∩ S|
|S|

(3)

4. Concept-Level Interpretability

To further demonstrate that DTCP attends more effectively to human-understandable concepts compared to the reproduced
model, we compute driving-related semantic IoU, as reported in Tab. 1. Specifically, we measure IoU between model-
generated saliency maps and key semantic classes: road, roadline, and sidewalk. The advantage of DTCP in allocating
greater attention to dynamic traffic participants and traffic lights is already illustrated in Tab. 3 of our main paper. Results in
Tab. 1 further confirm DTCP’s superior ability to attend to driving-critical regions, reflecting human-like behavior essential
for safe driving.

Table 1. Interpretability evaluation for driving-related concepts. We report the average IoU scores. Our method allocates greater
attention to decision-critical areas in driving scenarios.

Routes Method IoU ↑
Roadline Road Sidewalk

Town01 TCP [5] 0.00 0.01 0.04
DTCP (ours) 0.01 0.30 0.21

Town02 TCP [5] 0.00 0.02 0.03
DTCP (ours) 0.01 0.31 0.14

Town03 TCP [5] 0.00 0.02 0.08
DTCP (ours) 0.02 0.41 0.21

Town05 TCP [5] 0.00 0.02 0.06
DTCP (ours) 0.02 0.40 0.11

5. Diversity Loss Weight Effect

Tab. 2 presents the impact of different loss weights (λdiv) for our proposed diversity loss, as introduced in Sec. 3.3 of the main
paper. We report the mean and standard deviation of the driving score over three evaluation runs in the CARLA simulator [3]
on the LAV benchmark [2]. As shown, setting λdiv = 0.00005 yields the best driving performance with the lowest standard
deviation.

Table 2. Effects of Diversity Loss Weight. An empirical analysis to determine the optimal value of λdiv in our model on the LAV Routes
benchmark [2].

λdiv 5× 10−1 5× 10−2 5× 10−3 5× 10−4 5× 10−5 5× 10−6

Driving Score 42.87 ± 3.25 55.58 ± 6.44 48.22 ± 4.01 44.01 ± 1.29 60.42 ± 1.27 52.65 ± 1.78



References
[1] Angie Boggust, Benjamin Hoover, Arvind Satyanarayan, and Hendrik Strobelt. Shared interest: Measuring human-ai alignment to

identify recurring patterns in model behavior. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems,
pages 1–17, 2022. 2
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