
Appendix

A. Training Details

Table 1. Hyperparameters for language world model training.

Hyperparameter

SFT

Global Batch size 128
Batch size per GPU 4
LoRA rank [2] 64
LoRA α 16
Epoch 1
Learning rate 1× 10−5

Weight decay 0.1

RLVR

Max response length 1024
Batch size 128
PPO (GRPO) mini batch size 4
KL loss coefficient 0.04
Group size 4
Learning rate 5× 10−6

Sampling Top-p 0.95
Temperature 1.2
Repetition Penalty 1.2

Through an empirical study, we observed that for effec-
tive policy model optimization using the GRPO algorithm
[1], the responses of the reference model must exhibit suf-
ficient diversity within a limited group size. Accordingly,
we increased the repetition penalty and temperature slightly
compared to the default settings.

B. Split Dataset
B.1. Dataset Construction and Splitting Strategy
To enable both supervised and reinforcement fine-tuning for
visual path planning, we split the dataset into Supervised
Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT)
subsets using a structured and variance-aware strategy. We
first load the complete set of trajectory metadata D and de-
termine the target ratios for SFT versus RFT (e.g., 4:1), as
well as the distribution of turning and straight trajectories
within each subset (e.g., 6:4 or 4:6 depending on the set-
ting). For each trajectory d ∈ D, we calculate the variance
of its x-coordinates, which serves as a proxy for trajectory

Algorithm 1 Splitting Dataset into SFT and RFT data for
Visual Path Planning

1: Load entire trajectory metadata list D
2: Compute desired split sizes for:

• SFT vs. RFT (e.g., 4:1 ratio)
• Straight vs. Turn trajectories (e.g., 6:4 or 4:6 depend-

ing on SFT/RFT)
3: For each sample d ∈ D, compute variance of x-

coordinates over its trajectory
4: Sort all samples in descending order of x-variance
5: Split into two groups:

• Top-N samples with high variance → turning sam-
ples

• Remaining samples→ straight samples
6: From turning samples:

• Assign the first N1 to RFT-turn
• Assign the remaining N2 to SFT-turn

7: From straight samples:
• Assign first M1 to SFT-straight
• Assign next M2 to RFT-straight

8: For each sample in the SFT and RFT sets:
• Convert sample format into instruction-following for-

mat with:
– An image reference
– A natural language prompt
– A reasoning + answer pair

• Append to respective output list (SFT or RFT)
9: Save both lists as JSON files

curvature. We then sort the trajectories in descending order
of x-variance. Based on this ordering, we classify the top-N
trajectories with high variance as turning trajectories and the
remaining as straight trajectories. From these, we allocate
subsets to SFT and RFT splits: a portion of turning trajec-
tories to RFT-turn and the remainder to SFT-turn, and sim-
ilarly, straight trajectories to SFT-straight and RFT-straight.
Each selected sample is then converted into an instruction-
following format consisting of an image reference, a natu-
ral language prompt, and a corresponding reasoning-answer
pair. These formatted samples are saved as separate JSON
files for the SFT and RFT datasets.

B.2. Validation Set Construction

Figure 1. Distribution of trajectories in Deasy . trajectories exhibit
lower x-variance than Dhard as can be seen in Fig. 2.

Figure 2. Distribution of trajectories in Dhard. trajectories exhibit
lower x-variance than Deasy as can be seen in Fig. 1.

For evaluation, we construct validation sets focused on
moderate and hard scenarios. We begin with a dense set
of validation trajectories Ddense about 12K samples and re-
move any overlap with standard annotations Dstandard to ob-
tain candidate validation samples Dval. We compute the
x-variance for each sample and sort them accordingly. To
form the easy set Deasy, we select a middle slice (e.g., 1K
samples centered around the median x-variance). For the
hard set Dhard, we randomly sample 0.7K trajectories from
the top 70% (high-variance) and 0.3K from the bottom 10%
(low-variance) of the sorted list. Both validation subsets are
saved as JSON files for downstream evaluation.

Table 2. Summary of Validation Subsets Construction

Subset Sampling Strategy #Trajectories

Easy (Deasy) Median-centered 1K slice of x-variance 1K
Hard (Dhard) 0.7K from top 70% + 0.3K from bottom 10% 1K

Algorithm 2 Construct Validation Sets (Easy, Hard)

1: Load dense validation trajectories Ddense

2: Load standard validation annotations Dstandard

3: Dval ← Ddense \Dstandard

4: For each d ∈ Dval, compute variance of x over trajec-
tory

5: Dsorted ← sort Dval by x-variance (descending)
6: N ← |Dsorted|
7: Easy Set: Deasy ← Dsorted[N/2− 500 : N/2 + 500]
8: Hard Set:
9: Randomly sample 700 from top 70% of Dsorted

10: Randomly sample 300 from bottom 10% of Dsorted

11: Dhard ← combined samples
12: Save Deasy and Dhard as JSON

C. Pseudo code of OOD Evaluation

Algorithm 3 Procedure for Out-of-Distribution evaluation
with as pseudo code.

Require: Dataset D = {(Ii, Bi)}Ni=1 where Ii: image, Bi:
2D bounding boxes

Require: Model M predicting trajectory T =
{(xj , yj)}20j=1

Ensure: Fail Rate, Avg 2D BBox Collision, Avg Penetra-
tion Length

1: Initialize: Cfail ← 0, Cbbox ← 0, Lpen ← 0, N ← 0,
Tbbox ← 0

2: for each (I,B) in D do
3: T ←M(I) ▷ 20-point trajectory
4: traj ← LineString(T), c← 0
5: for each b ∈ B do
6: p← Polygon(b)
7: if traj.intersects(p) then
8: c← c+ 1
9: Lpen ← Lpen + length(traj ∩ p)

10: end if
11: Tbbox ← Tbbox + 1
12: end for
13: if c > 0 then Cfail ← Cfail + 1
14: end if
15: Cbbox ← Cbbox + c, N ← N + 1
16: end for
17: return Cfail

N , Cbbox

N , Lpen

N

Trajectory Fail Rate: The proportion of predicted trajec-
tories that intersect with at least one 2D bounding box in the
scene:

Fail Rate =
Number of collision trajectories

Total number of samples
(1)

Average 2D BBox Collision: The average number of

bounding boxes that each predicted trajectory collides with:

Collision Count =
Total bbox collisions

Total number of samples
(2)

Penetration Length: The average geometric length of tra-
jectory segments that penetrate into bounding boxes:

Avg Penetration Length =

∑N
i=1

∑|Bi|
j=1 length(Ti ∩ bboxj)

Total number of samples
(3)

where Ti∩bboxj represents the intersection between tra-
jectory Ti and bounding box bboxj .

D. Qualitative Results on OOD Benchmark
We qualitatively evaluate the proposed method on CODA-
LM, a zero-shot dataset composed of diverse corner cases
involving out-of-distribution (OOD) road hazards. Since
CODA-LM does not provide ground-truth trajectories, we
rely on visual inspection of the predicted paths to assess
plausibility, safety, and contextual awareness. As shown in
Fig. 3, the model fine-tuned with RLVR produces more re-
alistic and contextually appropriate trajectories compared to
the one trained via supervised fine-tuning. In scenarios in-
volving roadwork, blocked lanes, and ambiguous path con-
straints, the supervised model often generates overly lin-
ear or risk-prone trajectories that lack appropriate deviation
or caution. In contrast, the proposed method consistently
generates smoother, safer, and more context-aware trajecto-
ries, often adjusting path curvature to avoid obstacles such
as cones, barriers, and vehicles. These results demonstrate
the model’s capacity to generalize to previously unseen situ-
ations by aligning its reasoning and path generation with la-
tent planning cues in the scene, even without explicit super-
vision. While the absence of quantitative metrics in CODA-
LM limits numerical evaluation, these qualitative outcomes
suggest that reinforcement fine-tuning enhances the model’s
ability to adapt to driving contexts.

References
[1] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu

Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang,
Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025. 1

[2] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora:
Low-rank adaptation of large language models. ICLR, 1(2):3,
2022. 1

Figure 3. Qualitative results comparing supervised fine-tuning (top) and RLVR-based reinforcement fine-tuning (bottom) across diverse
out-of-distribution (OOD) hazard scenarios. Examples include construction zones, adverse weather (e.g., rain and poor lighting), un-
expected pedestrian behavior, and road obstacles. The proposed method generates more accurate and context-aware trajectories under
complex conditions, indicating better robustness in real-world hazard cases.

	Training Details
	Split Dataset
	Dataset Construction and Splitting Strategy
	Validation Set Construction

	Pseudo code of OOD Evaluation
	Qualitative Results on OOD Benchmark

