Appendix

In this appendix, we provide the following material:

* More detailed implementation details (see Appendix A).

* Additional comparison between models pre-trained with
different Masked Video Modeling (MVM) objectives (see
Appendix B).

¢ Detailed evaluation and comparison with existing meth-
ods (see Appendix C).

* Annotation refinement (see Appendix D).

A. Implementation details

Encoder-only architecture. With our simple encoder-only
design, we pass a video input X, € RT>*H*xWx3 gt time ¢
to a Video Foundation Model (ViFM) encoder, obtaining a
spatio-temporal feature vector F; € R¥, and then transform
it into classification logits L; € R® using one linear layer.

The way F; is obtained depends on the specific encoder
design. For Video ViTs, we retain the original architectures
used for general video classification. First, the input is di-
vided into tubelet tokens (spatio-temporal patches), which
are then passed through a series of Transformer blocks.
Then, the resulting tokens are aggregated into one spatio-
temporal embedding. All Video ViT models we used, ex-
cept for InternVideo2 [52], do not include a dedicated clas-
sification token and apply mean pooling over the result-
ing token embeddings. InternVideo2 [52] includes an addi-
tional token, but instead of treating it separately, the model
aggregates all the resulting tokens using an attention pool-
ing layer, which computes a weighted sum of the embed-
dings of the token, allowing the model to adaptively fo-
cus on the most informative spatio-temporal regions. Fi-
nally, as in the original designs, the aggregated feature vec-
tor is further processed with a final Layer Normalization [2]
operation to stabilize and standardize the representation.
For the R(2+1)D model [45], which follows a convolu-
tional design, no explicit token aggregation step is required.
The model processes the spatio-temporal input through 3D
convolutional layers and directly produces a single spatio-
temporal embedding. We adopt the implementation from
CycleCrash [8], where the final spatio-temporal embedding
is passed through a batch normalization layer and ReL.U ac-
tivation to obtain the final spatio-temporal feature vector Fy.

Domain-adaptive pre-training. We base our training
on the VideoMAE [44] pretraining recipe with AdamW/[29]
optimizer and MSE loss on masked tokens. We downscale
the training and set the batch size to 800 with 1M samples
per epoch, which corresponds to 1250 iterations per epoch.
We set the cosine learning rate schedule for 20 epochs with
1 epoch of linear warmup, but stop after 12 epochs by de-
fault. We mask out 75% of the frames.

When mixing normal and abnormal driving data, each
batch consists of 480 samples (60%) from the normal driv-

ing dataset BDD100OK [55], and 320 samples (40%) from
the abnormal driving dataset CAP-DATA [11]. Note that
CAP-DATA includes both normal and abnormal driving ex-
amples.

Fine-tuning.  All Video ViT models are fine-tuned un-
der the same configuration using a batch size of 56. We
closely follow the VideoMAE [44] fine-tuning recipe for the
small HMDBS51[21] dataset with AdamW[29] optimizer,
cosine learning rate schedule, and the cross-entropy loss.
We set the layer decay rate to 0.6, take 50K training ex-
amples per epoch (randomly chosen each new epoch), and
fine-tune for 50 epochs with 5 epochs of linear warm-up.
For the Base and Large variants, we also set the learning
rate to 5e-4.

For MOVAD [37], we adopt the official publicly avail-
able implementation. For VidNeXt [8], its ablations, and
the R(2+1)D model [45], we reimplement training within
our pipeline to ensure consistency across datasets. Where
applicable, we align fine-tuning hyperparameters with the
original recipes, while training these models for the same
number of iterations as Video ViT models.

Evaluation. = We report AUCgoc using checkpoints
with the highest AUCgroc on the validation set. For
AUCpicc and MCC@0.5, we use checkpoints with the high-
est AUCyicc on the validation set.

B. Effectiveness of different MVM objectives
for TAD

We demonstrated in Sec. 4.3 and Tab. 3 that among fully-
supervised (FSL), weakly-supervised (WSL), and self-
supervised (SSL) pre-training, the latter is the most suitable
for TAD. Self-supervised pre-training methods for video are
predominantly based on the MVM approach, which recon-
structs masked video patches. However, specific designs
of the MVM pre-training approach vary in how patches are
masked and what is reconstructed.

To better understand the effect of specific MVM ob-
jectives and masking strategies, we select several ViFMs
that differ only in these parameters and fine-tune them
on DoTA [54]. All models were pre-trained on Kinetics-
400 [17] for 1600 epochs with the spatio-temporal patch
size of 2x16x16 and the same input size of 16x224x224.

VideoMAE [44] employs random tube masking, where
contiguous spatio-temporal volumes are randomly masked
to encourage learning from structured visual dynamics.
Being a Masked Autoencoder (MAE) method, it recon-
structs RGB pixels of masked patches. MME [41] intro-
duces motion-aware masked autoencoding by reconstruct-
ing dense motion trajectories instead of raw pixels. It ran-
domly masks tubes and trains the model to predict mo-
tion features extracted from frame differences, promoting
a stronger understanding of dynamic content in videos.
SIGMA [38] aims to learn high-level semantics with a pro-



Model AUCroc AUCymce MCC@0.5 Masking strategy Reconstruction objective
VideoMAE [44] 86.3 54.8 57.8 Random tube Pixel

MME [41] 86.3 55.2 57.8 Random tube Motion trajectory

SIGMA [38] 86.4 54.8 57.9 Random tube Cluster assignments
MGMAE [15] 86.6 55.0 58.2 Optical flow guided token  Pixel

Table 5. Effect of MVM pre-training objectives. Despite variations in masking strategy and reconstruction objectives, all MVM-
based models show strong performance, indicating that MVM is broadly effective for TAD. Models leveraging motion-aware objectives
or masking (MME [41], MGMAE [15]) slightly outperform those relying on raw pixels or semantics (VideoMAE [44], SIGMA [38]),
suggesting that motion modeling benefits TAD, even when pre-trained on general datasets. Using Video ViT-Base models initialized with
weights pre-trained on Kinetics-400 [17] and fine-tuned on DoTA [54].

jection network, so instead of raw pixels, it reconstructs
semantic cluster assignments derived via optimal trans-
port over spatio-temporal features. On the opposite, MG-
MAE [15] keeps raw pixels as its reconstruction objective
and focuses on advancing the masking strategy. It intro-
duces a motion-guided masking mechanism that leverages
optical flow to prioritize masking regions with higher mo-
tion, encouraging the model to focus on dynamic and infor-
mative parts of the video.

We compare the performance of these models on DoTA
in Tab. 5 and see that, despite using different objectives and
masking strategies, all MVM-based models achieve simi-
larly strong performance on TAD, confirming that MVM
pre-training is robust and broadly effective for this task.
Notably, MME slightly outperforms others in AUCycc by
predicting motion trajectories rather than pixels, suggesting
that incorporating motion dynamics into the reconstruction
objective may help the model better capture temporal cues
relevant for anomaly detection. MGMAE achieves the high-
est AUCgoc and MCC@0.5, indicating that motion-guided
masking can help the model focus on dynamic and informa-
tive regions. In contrast, SIGMA, which reconstructs high-
level semantic clusters, performs on par with VideoMAE,
providing no clear evidence that high-level semantics im-
prove TAD performance.

These results indicate that motion-oriented objectives
and masking strategies provide consistent benefits for TAD,
even when pre-training is performed on general video
datasets. In contrast, high-level semantic reconstruction
shows only marginal gains, suggesting that focusing on
such features may not directly benefit tasks requiring fine-
grained temporal reasoning like TAD, unless better aligned
with the demands of the task.

C. Detailed evaluation and comparison with
existing methods

We present additional experiments that compare our
encoder-only ViFM-based models with top-performing spe-
cialized TAD methods and analyze key aspects of their per-
formance more closely.

Short Anomaly Categories

ST Collision with another vehicle which starts, stops, or is
stationary

AH Collision with another vehicle moving ahead or waiting

LA Collision with another vehicle moving laterally in the
same direction

oC Collision with another oncoming vehicle

TC Collision with another vehicle which turns into or
crosses a road

VP Collision between vehicle and pedestrian

VO Collision with an obstacle in the roadway

00 Out-of-control and leaving the roadway to the left or
right

UK Unknown

Table 6. Traffic anomaly categories in the DoTA dataset. Each
category is represented by scenarios with and without ego-car par-
ticipation.

First, we compare our models with existing specialized
TAD methods across anomaly categories and groups of the
DoTA [54] dataset. DoTA comprises scenarios where the
ego-vehicle, from which the video is captured, is either in-
volved in the anomaly or observes other road agents in-
volved in it. We show the list of anomaly categories in
DoTA in Tab. 6.

We show the results across categories in Tab. 7. We
can see that for most of the categories, and especially for
the ego-involved group, our DAPT-VideoMAE models out-
perform or are on par with specialized methods. ISCR-
TAD [25] and PromptTAD [35] frequently rank among the
top three methods across several categories. That suggests
that incorporating object information and various related
representations, such as depth or high-frequency features,
is beneficial, especially in highly untypical accident scenar-
ios (categories UK and UK¥*).

Next, in Tab. 8, we assess the generalization performance
of the models by evaluating those trained on DoTA [54] di-
rectly on the DADA-2000 [10] dataset. VideoMAE-based
models already outperform specialized methods by a large
margin, and applying DAPT further improves performance.



Ego-vehicle involved video clips

Method ST AH LA oC TC VP VO 00 UK AVG
STFE [57] 752 845 721 773 728 719 - - - 75.6
MOVAD [37] 86.6 863 849 837 85 816 774 819 738 83.1
TTHF [24] 8.7 905 897 870 8.5 771 876 901 709 85.5
PromptTAD [35] 842 902 884 856 8.1 836 868 887 74.6 -

ISCRTAD [25] 81.7 892 899 874 909 831 901 889 789 86.7
DAPT-VideoMAE-S 873 911 902 87.6 91.0 832 857 912 758 89.9
DAPT-VideoMAE-B 87.5 92.0 90.7 89.6 918 &81.6 884 911 76.1 90.7
DAPT-VideoMAE-L 874 90.6 914 88.7 918 859 898 916 76.0 90.7

Ego-vehicle NOT involved video clips

ST* AH* LA* OC* TC* VP* VO* O0OO0* UK* AVG*
STFE [57] 80.6 656 699 765 742 - 75.6  70.5 - 73.2
MOVAD [37] 722 740 748 802 79.6 768 822 783 729 76.8
TTHF [24] 749 760 764 798 815 792 790 775 689 71.0
PromptTAD [35] 73.8 787 818 828 851 846 831 824 79.1 -
ISCRTAD [25] 84.6 787 773 858 825 868 854 845 735 82.1
DAPT-VideoMAE-S 789 77.8 78.1 86.6 839 829 786 81.8 757 81.6
DAPT-VideoMAE-B  80.2 80.0 83.6 866 858 867 84.6 844 73.0 84.1
DAPT-VideoMAE-L 790 814 861 882 863 858 857 856 756 85.2

Table 7. Comparison with specialized TAD methods across categories. Our simple encoder-only models outperform or match top spe-
cialized methods across majority of categories. Models using explicit object or scene cues and extra representations (e.g., ISCRTAD [25],
PromptTAD [35]) show advantage in rare or ambiguous scenarios, such as UK and UK*. Reporting AUCroc (%) of individual accident

categories on the DoTA [54] dataset.

Method Ego Non-Ego  Both
TTHF [24] 80.9 64.0 71.7
PromptTAD [35] 79.7 70.4 74.6
ISCRTAD [25] 82.7 66.9 74.2
VideOMAE-SHALF 89.6 74.8 81.6
VideoMAE-S 90.2 78.3 83.7
VideoMAE-B 91.2 79.6 84.9
VideoMAE-L 92.0 81.0 86.2

DAPT—VidCOMAE-SH ALF
DAPT-VideoMAE-S
DAPT-VideoMAE-B
DAPT-VideoMAE-L

90.4+0.8  77.5+2.7 83.4+1.8
91.2+1.0 78.7+04 84.3+0.6
92.4+1.2 80.3+0.7 85.8+0.9

91.9

-0.1 82.3+1.3 86.6+0.4

Table 8. Generalization performance. VideoMAE-based [44] models generalize significantly better than specialized methods, and even
a lightweight variant trained on only half of DoTA [54] outperforms prior work, underscoring the robustness of foundation model pre-
training. AUCroc (%) of different methods trained on DoTA [54] and evaluated on DADA-2000 [10].

VideoMAE-Syarr, a small variant of a Video ViT fine-
tuned on only half of the DoTA dataset, already outperforms
specialized methods significantly, highlighting the strong
generalization capabilities commonly attributed to founda-
tion models.

D. Annotation refinement

While DoTA [54] provides large-scale and comprehensive
annotations for traffic anomaly detection, we noticed minor
inconsistencies and structural issues that could affect train-
ing and evaluation. To identify these cases, we fine-tuned
a VideoMAE-Small [44] model on the official training set



and calculated the error rate for each video clip in the set.
After that, we flagged the clips with the highest error rate.
This model-guided filtering exposed potentially mislabeled
or ambiguous samples. Manual review revealed issues, such
as substantially imprecise anomaly timing and distinct clips
merged into a single video file, which we manually cor-
rected. We repeated the same procedure (including fine-
tuning) on the validation set. Although only about 1% of
the clips were refined, we release the corrected annotations
for reproducibility. We use the refined DoTA dataset for
comparisons between Video ViT models, and the original
dataset when comparing to existing specialized methods.

We repeated the same process for DADA-2000 [10], but
a brief manual review did not reveal any significant incon-
sistencies.
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