Towards Vision Zero: The TUM Traffic Accid3nD Dataset
Supplementary Material

accident-dataset.github.io

Figure 1.Visualization labeled sequences within the TUMTraf-Accid3nD dataset. It contains 12 sequences each recorded from four
roadside cameras on a highway test bed. The dataset includes accident scenes during different lighting and weather conditions.
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VLMs like AccidentGPT [3] can interpret and contextualize
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Figure 2. Overview of the A9 Digital Test Field for Autonomous Driving. The blue sensor stations (gantry bridges S040 and S050) on
the highway were used to record the data with four roadside cameras, four radars, and one LiDAR.

accident scenarios with enhanced detail. The integration
of VLMs aids in recognizing accident-related events, such
as sudden braking, near-misses, or unusual traffic patterns.
With vision-language models, systems can also provide
interpretable explanations for detected incidents, offering
insights that support safer decision-making in autonomous
and intelligent transportation systems. Related approaches
were developed in [4, 5] to detect both accidents and general
traffic anomalies.

B. Extended Dataset Description

B.1. Data Collection Setup

The A9 Digital Test Field for Autonomous Driving is located
on the A9 highway in Munich, Germany. Figure 2 shows
the 3 km long test field from a bird’s-eye view. It contains
eight measurement stations in total: three on the highway
(marked in blue), three in a rural area (marked in green),
and another two in an urban area (marked in orange).
Each station includes a robust sensor suite with roadside
cameras, radars, and LiDAR units. The infrastructure sup-
ports seamless tracking of objects across multiple sensor
stations using sensor data fusion and tracking. All traffic par-
ticipants are continuously monitored, and the anonymized
recordings are stored on secure servers. Sensors were posi-
tioned to optimize coverage, enabling detailed observation

of accident-prone areas such as merging lanes and intersec-
tions. The dataset was recorded at a busy section of the
highway, containing 12 lanes including two exit lanes. On
this highway, various scenarios can occur in diverse weather
(sunny, cloudy, foggy, rainy) and lighting conditions (day,
dusk, dawn, and night time). The specific accident types are
described in Section B. 3.

B.2. Annotation Details

The dynamic highway environment posed significant chal-
lenges, particularly in ensuring accurate sensor calibration
over a long time. Changes in harsh weather conditions, such
as heavy rain, hail, or snow, have often required recalibrating
the sensors to maintain an accurate data capture. Occlusion
was another critical issue, as large trucks and dense traffic
frequently obstructed smaller vehicles and pedestrians, com-
plicating the annotation process. We apply novel tracking
methods to track occluded objects. Additionally, accident
scenarios often involved rolled-over vehicles, which made it
difficult to annotate. We did not decide to annotate the roll
and pitch angle of traffic participants to simplify the labeling
guidelines. To ensure a high labeling quality, we adopted an
iterative annotation process that incorporated feedback from
domain experts.
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Figure 4. Visualization of labeled sequence SO01. A vehicle is  Figure 5. Visualization of labeled sequence S02. A blue van with a
speeding at 180 km/h and crashes into a van that has a breakdown trailer is tipping over after a strong wind gust is hitting it.
on the left lane.

Figure 6. Visualization of labeled sequence S03. A vehicle is not Figure 7. Visualization of labeled sequence S04. A post-accident
maintaining safety distance to the leading vehicle. It changes the lane  scenario was labeled with arriving police, ambulance, and fire trucks.
to the right and hits another two vehicles. One of them is full 360- Some people get out of their cars to secure the site of an accident.
degree spin.

Figure 8. Visualization of labeled sequence S05. A van stops onthe  Figure 9. Visualization of labeled sequence S06. The van starts to
shoulder lane and starts to burn. The passengers are getting out of the  burn heavily and produces a large smoke cloud that occludes the
van and secure their belongings. A man tries to extinguish the fire traffic participants in the roadside camera.

without any success.



Figure 11. Visualization of labeled sequence S07. Emergency ve- Figure 12. Visualization of labeled sequence S08. A traffic jam is

hicles (police, ambulance, and fire trucks) arrive a van is burning for ~ forming on the highway. A vehicle changes lanes at night without

15 minutes. turning on the indicator lights. Another vehicle is tail-gaiting that
vehicle from the back.

Figure 13. Visualization of labeled sequence S09. A truck is chang- Figure 14. Visualization of labeled sequence S10. A truck is chang-
ing lanes and tailgates a car from the back. Both vehicles stop on the ing lanes and rams a passenger vehicle from the side. It is spinning
shoulder lane to inspect the collision. 180-degree in one direction and then in the other.

Figure 15. Visualization of labeled sequence S11. The driver of a Figure 16. Visualization of labeled sequence S12. A vehicle is
pick-up truck falls asleep momentarily at night, changes three lanes, speeding and crashes into a van that has a breakdown on the left lane.
and flies over the guardrail. After landing behind the guardrail, it is

rolling over three times.
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Figure 17. Visualization of speed values for each labeled cate-
gory. We show the average and maximum speed values for all
categories. The average speed is 107 km/h in the dataset.

B.3. Quality Assurance

A multi-level quality assurance process was implemented to
ensure annotation precision and consistency. Expert review-
ers conducted manual inspections of labeled frames to iden-
tify misalignments or inaccuracies in categories, instance
masks, and 3D bounding boxes. Automated checks were em-
ployed to validate trajectory continuity and to ensure logical
consistency in object movements. For example, any abrupt
jumps in tracked objects’ paths were flagged for review. This
hybrid approach combined the advantages of human exper-
tise and automated validation, significantly improving the
reliability of the dataset while reducing annotation errors.

B.4. Detailed Dataset Visualization

Das dataset is visualized in Figs. 4, 5, 6, 7,

8,9,11,12,13, 14, 15, and 16. All 12 sequences recorded
from four roadside cameras are displayed. The annotated
frames in the dataset include the object category, speed,
color-coded 2D instance masks and 3D bounding boxes to
denote the object track, trajectory lines to indicate movement
paths, and the total number of traffic participants in the
current scene. These visualizations provide a view of inter-
actions within a scene, such as the buildup to an accident or
evasive maneuvers by other vehicles. These visualizations
of traffic participants, coupled with speed values, make it
easier to analyze and interpret complex traffic scenarios.
Moreover, the speed and velocity of all traffic participants
were calculated based on the 3D location and the time differ-
ence between the frames. Figure 17 visualized the average
and max. speed values for each labeled category. The max.
speed in the labeled dataset is 180 km/h (sequence SO1). The
overall maximum speed that was found in the recordings is
263 km/h in the north direction of the highway, where no
speed limit is set.

C. Comparative Dataset Analysis

C.1. Quantitative Comparison

Our dataset is tailored for accident-centric research, address-
ing gaps left by popular datasets like KITTI [6, 7], nuScenes
[8], Waymo Open [9], DAIR-V2X [10], and TUMTraf-V2X
[11]. With over 111,000 labeled frames, it offers a large-
scale dataset with a high density of safety-critical scenarios.
Trajectories are notably longer with a maximum of 2,114
meters, allowing for the study of pre-accident behaviors such
as abrupt lane changes or sudden decelerations. The dataset’s
multi-modal approach, combining data from four roadside
cameras and one LiDAR, enhances its suitability for coop-
erative perception research. A comparative table (Table
1) illustrates these metrics, and emphasizes our dataset’s
strengths in annotation density, accident-specific focus, and
environmental diversity.

C.2. Unique Features

Our dataset stands out with its accident-focused labeling
and unique features tailored for safety-critical analysis. It
includes high-speed accident scenarios (up to 180 km/h) and
extensive trajectory lengths, with a cumulative track length
0f 2,250 km and individual tracks exceeding 2 km. Captured
on a busy 12-lane highway, frames contain up to 55 labeled
objects that are labeled at 25 Hz with synchronized camera
and LiDAR data. With over 2.6 million 3D boxes, the dataset
precisely records 3D vehicle locations and enables realistic
accident reconstructions in simulations. It can also be used to
train models for detecting small and distant objects (200—400
m away) or to better detect objects that are occluded by large
vehicles like trucks. Finally, our dataset includes diverse
scenarios, such as night-time accidents, which allows robust
model training.

C.3. Prevalence of Accident Types

Accident scenarios are categorized into key types to support
diverse research objectives. Rear-end and side collisions
comprise 25% of accidents, often captured in stop-and-go
traffic conditions. Breakdown events account for another
25%. They occur frequently on the highway, and vehicles
stop on the shoulder lane to inspect the failure. Multi-vehi-
cle pileups, where more than two vehicles were involved,
also contained rear-end and side collisions. They occurred
in 16.67% and are extensively annotated to capture their
complex dynamics. In another two sequences (16.67%), the
driver fell asleep. One sequence (8.3%) contains a scenario
in which a heavy wind burst caused an accident. A trailer that
was towed by a van tipped over, letting the vehicle tip over.
The pie chart in Figure 18 illustrates the distribution of these
accident types, offering a clear visualization of the dataset’s
focus areas and the breadth of scenarios included for safety
analysis.



Figure 1. VLM analysis results. TUMTraf-Accid3nD scene images flagged as novel by the method of [4]. We note that the vehicle accident
was successfully identified as novel by multiple cameras.
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Figure 18. Distribution of accident types.

D. Benchmarking Experiments

D.1. Experimental Setup

Benchmarking experiments utilized high-performance
NVIDIA GPUs (RTX 3090) and frameworks such as Py-
Torch for object detection and tracking. Key evaluation
metrics include the mean Average Precision (mAP) for de-
tection, F1-scores for classification tasks, and Multi-Object
Tracking Accuracy (MOTA) for tracking performance. All
benchmarks followed a standardized protocol to ensure
reproducibility, including fixed dataset splits and uniform
preprocessing pipelines. The experimental setup was vali-
dated to provide reliable baselines for future research.

D.2. Supported Tasks

The dataset supports a range of tasks critical to autonomous
driving, including 2D object detection, 2D instance segmen-
tation, 3D object detection, object tracking, sensor data
fusion, trajectory prediction, and accident detection. Addi-
tionally, its multi-modal nature enables advanced use cases
such as risk assessment, scene reconstruction, and cooper-
ative perception. This allows researchers to address funda-
mental challenges in safety-critical scenarios.

D.3. Experimental Analysis

Performance varied significantly across object classes and
accident scenarios. Cars, the most frequent object type,
achieved the highest detection precision for accident detec-
tion, benefiting from abundant training samples. Trucks and
motorcycles, while less frequent, showed lower precision

due to challenges like size variability and partial occlusions.
Scenarios involving sudden stops or lane changes exhibited
higher accuracy compared to subtle incidents like slow
drifts. This per-class breakdown informs researchers about
class-specific challenges, guiding improvements in model
architectures and dataset-balancing strategies.

D.4. Vision-Language Model Efficacy

As a demonstration of VLM analysis on the TUMTraf-
Accid3nD benchmark, we apply the novelty detection
method of [4] to the dataset. Of the 11,924 images in the test
split, 12 are flagged as most novel, with 6 of these images
depicting accidents and others depicting novel events such
as stopped traffic or unusually patterned vans. This method
prioritizes finding events unlike others in the dataset, so the
relatively high frame rate challenges the method. This can be
overcome by simple downsampling of the dataset. Interest-
ingly, the method is able to pick up on novel accident scenes
from each camera view. Example figures from this novel
set are displayed in Fig. 1. We note that for future research,
binary annotation of accident vs. non-accident scenes can
allow for training and quantitative evaluation of this novelty
detection method over the dataset.

E. Accident Detection Methodology
E.1. Rule-Based Detection

Our rule-based detection module uses a set of pre-defined
thresholds to identify accidents. For example, a vehicle
decelerating at a rate exceeding 5 m/s* or experiencing a
sudden trajectory deviation of over 30° triggers an accident
flag. These rules are grounded in real-world traffic data and
validated through extensive simulations. Pseudocode and
mathematical formulas outline the detection logic, providing
transparency and replicability for researchers.

E.2. Learning-Based Detection

The YOLOvVS8 model [12], fine-tuned on our custom dataset,
achieved a precision of 80% in detecting accident events. We
used a balanced dataset split to train the model to mitigate the
effects of class imbalance and to improve the detection sen-
sitivity for less frequent accident types like side collisions.
Hyperparameter tuning, such as adjusting learning rates and



batch sizes, further optimized model performance. A detailed
analysis of the model’s sensitivity to dataset size and class
distribution reveals its robustness in real-world scenarios,
offering a reliable benchmark for future development.

F. Applications and Broader Implications

The dataset supports autonomous driving applications, par-
ticularly in safety-critical scenarios.

F.1. Autonomous Driving Use Cases

The dataset empowers autonomous driving systems by en-
hancing their ability to handle safety-critical situations. It
supports tasks like real-time accident detection and trajec-
tory prediction, enabling proactive measures like emergency
braking or lane adjustments. For instance, recognizing
abrupt braking patterns allows autonomous systems to react
swiftly, minimizing collision risks.

F.2. Infrastructure-Based Applications

Beyond vehicle systems, the dataset has significant impli-
cations for Intelligent Transportation Systems (ITS). V2X
communication applications use this data to send timely
alerts to nearby vehicles and emergency services, reducing
response times during accidents. These interventions use
sensor data fusion to ensure precise and actionable insights
for infrastructure-based safety measures.

F.3. Research Opportunities

The dataset unlocks avenues for advancing multi-modal
learning, cooperative perception, and predictive modeling.
Research can explore scene graph generation to map intri-
cate relationships between objects or delve into accident
anticipation models for preemptive interventions. These ar-
eas represent cutting-edge challenges that can reshape safety
mechanisms in autonomous systems and transportation.

G. Limitations and Future Directions

G.1. Dataset Limitations

The dataset primarily focuses on highways, with limited rep-
resentation of urban settings and adverse weather conditions
like snow. Additionally, the scarcity of nighttime accident
samples introduces biases that may impact model generaliz-
ability to diverse environments.

G.2. Future Expansion

Plans for expansion include capturing data in urban environ-
ments, incorporating additional sensor modalities such as 4D
radar and thermal imaging for low-light scenarios, and in-
creasing the diversity of accident types. These improvements
aim to bridge current gaps, making the dataset more versatile
for varied applications and conditions. Our goal is also to

deploy the accident detection pipeline in real-world settings
to notify traffic participants in real-time. In future work, we
will also explore accident video diffusion approaches for
generating realistic accident scenarios, enabling better train-
ing and evaluation of autonomous driving models in rare and
safety-critical situations.

H. Development Kit Overview

The dataset is licensed under the Creative Commons License
(CC BY-NC-SA 4.0) and is accompanied by a develop-
ment kit comprising tools for annotation correction, model
evaluation, and visualization. Pre-trained models and mod-
ular scripts are provided to simplify integration, enabling
researchers to focus on experimentation and innovation.
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