
7. Supplementary Material
7.1. Filtering Gaussians that are not Surface

Aligned
Another issue is that there are some Gaussians that, even
with high visual contributions, are not positioned close to
surfaces of the scene. The surface of the scene in a particu-
lar image can be predicted by calculating the depth of each
pixel. A depth map of a Gaussian scene can be rendered as:

D =
∑

j∈P (k)

∑
i∈Gt

Tij · αi · di, (9)

where D is the depth map and d is the z-depth of that
Gaussian in image space. During the colour rendering pro-
cess, we calculate the distance between each contributing
Gaussian and the calculated depth of that pixel, which quan-
tifies how close each contributing Gaussian is to an object
surface. The difference between the predicted surface and
Gaussian depth in image space is calculated as:

sijk =
∑

k∈Cameras

∑
j∈P (k)

∑
i∈Gt

|Djk − di|, (10)

where s is the surface distance. These values will vary
between rendered images, since not all cameras render
Gaussians from perspectives where all Gaussians in the
pixel are accurately projected onto their closest surface.
Hence, we take the minimum calculated surface distance
for each Gaussian over all pixels. The final Gaussian sur-
face distance is calculated as:

Si = Sj∗ where j∗ = argmin
j

sij , (11)

where i is index of the current Gaussian and j is the
index of the current pixel. Since we have calculated a min-
imum surface distance of each Gaussian, we can remove
outlier Gaussians that are not deemed close enough to the
scene surfaces. Hence, Gaussians with comparatively large
surface distance values are culled, with σ = 2 producing
adequate results for large scenes. This process is illustrated
in Figure 7.

7.2. Ensuring Gaussians are Positive Semi-definite
To correctly sample points from Gaussians, their covariance
matrix Σ must be positive semi-definite. This is not a strict
requirement for rendering, and as such, 3DGS scenes often
contain Gaussians that break this property. We enforce this
by regularising each matrix, by adding a small scalar value
ϵ = 10−6 to the diagonal elements:

Σ′ = Σ+ ϵI, (12)

where I is the identity matrix. Furthermore, we perform
eigenvalue decomposition Σ′ = QΛQ−1, and clamp the

Figure 7. Overview of our approach for filtering Gaussians that
are not aligned with the surfaces in the scene. Firstly, the depth
of each pixel is calculated during the colour rendering process,
as represented by each black cross. Then all Gaussians that have
a minimum distance to each pixel depth that is less than a pre-
defined threshold are removed, with these distance ranges being
represented by each red ring.

eigenvalues in Λ such that λi¸max(λi, ϵ), with ϵ = 10−7.
The final covariance matrix is reconstructed as:

Σ′′ = QΛ′Q−1. (13)

Any Gaussian with a covariance matrix that is still not
positive semi-definite is considered erroneous and removed
from point sampling.

7.3. Gaussian Magnitude Scaling Behaviour

Using
√
SA in equation (5) means that the magnitude scales

linearly when the entire Gaussian is uniformly enlarged or
shrunk (i.e., all axes are scaled by the same factor). In the
Gaussian equation used by 3DGS [19]

G(x) = e−
1
2 (x)

TΣ−1(x),

it can be shown that uniformly scaling by a factor of s is
equivalent to scaling our covariance by s2:

G(
x

s
) = e−

1
2 (x)

T (s2Σ)−1(x), s ∈ R+.

It follows then that the eigenvalues are scaled by s2. Hence
our new new semi-axis lengths are scaled by s: a′, b′, c′ =
s
√
λ1, s

√
λ2, s

√
λ3 = sa, sb, sc. Using our new semi-axes

in Equation 6 reveals that our new surface area, SA′, is
scaled by s2:

SA′ = 4π
p

√
a′pb′p + a′pc′p + b′pc′p

3
(14)

= 4π
p

√
(s2)p(apbp + apcp + bpcp)

3
(15)

= s2SA. (16)

So,
√
SA′ = s

√
SA, which is a more desirable trait for fine

detail preserving allotment of points. For completeness, we
note that the Gaussian volume would be scaled by a factor
of s3.

7.4. Converting 3DGS-to-PC Point Clouds into
Meshes

While 3DGS-to-PC focuses on converting 3DGS scenes
into point clouds, our framework also offers capabilities for
producing subsequent meshes via predicted surface point
generation.

7.4.1. Methodology
As discussed in Section 7.1, our method can determine
Gaussians in close proximity to surfaces by calculating the
minimum distance of each Gaussian to the predicted pixel
depth. Hence, we can determine a small subset of Gaussians
that effectively map on predicted surfaces of the scene. We
found that culling Gaussians outside a range of σ = 0.5
produced the best results to retain Gaussians on predicted
surfaces.
In order to effectively mesh each Gaussian, the normal vec-
tor of each Gaussian needs to be calculated, which deter-
mines the orientation of the surface. We chose to assign the
normal of each Gaussian to its smallest scale. This approach
has merit, since we observe that Gaussians often elongate
along surfaces that they represent.
We then leverage the process described in Section 3.3,
which produces a point cloud that is generated specifically
from a subset of predicted surface Gaussians, with each
point having the same normal vector as its associated Gaus-
sian. We then employ Open3D’s [43] Poisson surface re-
construction algorithm to convert this surface point cloud
into a coloured mesh. To further enhance the mesh qual-
ity, we remove the 10th percentile of points with the low-
est densities. In this context, densities refer to the number

Figure 8. Overview of our approach for meshing 3DGS scenes.
Firstly, points are generated using the standard point generation
process on predicted surface Gaussians. The normals for each of
these points are determined as the smallest side of its associated
Gaussians. Next, a mesh is created by using Poisson surface re-
construction and then improved using Laplacian smoothing.

of connected vertices that each vertex has. Additionally,
Laplacian smoothing [38] can be optionally applied to re-
duce surface noise and improve mesh topology. This pro-
cess is highlighted in Figure 7.

7.4.2. Discussion
Due to the efficiency of our rendering pipeline and point
generation approach, extending our method to support mesh
reconstruction introduces minimal computational overhead.
As a result, mesh generation is considerably fast compared
to other state-of-the-art models. However, the output qual-
ity is poorer than other dedicated 3DGS meshing methods,
such as PGSR, in terms of detail and geometric fidelity. This
is highlighted in Figure 9, which presents a visual compari-
son between meshes produced by our approach and PGSR.
Since our method does not optimise Gaussians to conform
to surface geometry during training, we rely on a Gaussian

PGSR Ours

Figure 9. Comparison between PGSR and 3DGS-to-PC for gener-
ating meshes on the DTU and TnT datasets.

cleaning step to discard noisy Gaussians, while retaining
those that capture scene surface structures. However, this
step is sensitive to the input 3DGS scene. On the DTU
dataset, this filtering inadvertently removes Gaussians that
were correctly aligned with object surfaces, leading to in-
complete mesh topology. In contrast, on the TnT dataset,
the filtering process struggled to cull Gaussians not situated
on object surfaces, resulting in noisy mesh generation.
In summary, while our meshing approach is computation-
ally efficient, it currently lacks the robustness and preci-
sion compared to other dedicated 3DGS meshing models.
Hence, further refinement is necessary to achieve competi-
tive performance.

7.5. Full DTU Results

Model Metric 24 37 40 55 63 65

PGSR
PC → GT 0.73 1.10 0.65 0.43 1.56 0.49
GT → PC 0.37 0.41 0.38 0.36 0.34 0.52

Ours
PC → GT 1.15 1.21 1.17 1.2 1.66 1.59
GT → PC 0.43 0.42 0.58 0.41 0.35 0.48

69 83 97 105 106 110 114 118 122

0.49 1.17 0.94 0.78 0.40 0.53 0.42 0.48 0.41
0.39 0.41 0.40 0.38 0.43 0.32 0.28 0.38 0.33

1.38 1.47 1.42 1.07 1.17 1.43 1.18 0.94 1.18
0.43 0.8 0.48 0.45 0.56 0.48 0.33 0.43 0.33

Table 3. All point cloud to ground truth and ground truth to point
cloud comparison results for each individual scene in the DTU
dataset, for PGSR and 3DGS-to-PC methods.

