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Abstract

Effective human-Al collaboration for physical task com-
pletion has significant potential in both everyday activities
and professional domains. Al agents equipped with in-
formative guidance can enhance human performance, but
evaluating such collaboration remains challenging due to
the complexity of human-in-the-loop interactions. In this
work, we introduce an evaluation framework and a multi-
modal dataset of human-Al interactions designed to assess
how Al guidance affects procedural task performance, er-
ror reduction and learning outcomes. Besides, we develop
an augmented reality (AR)-equipped Al agent that provides
interactive guidance in real-world tasks, from cooking to
battlefield medicine. Through human studies', we share
empirical insights into Al-assisted human performance and
demonstrate that Al-assisted collaboration improves task
completion.

1. Introduction

Recent progress in Artificial Intelligence (AI) have been
driven by the rapid development of Large Language Mod-
els (LLMs) such as GPT [16], Claude [1], Gemini [22],
Qwen [2, 26] and LLaMA [23], which exhibit impressive
capabilities in language understanding, reasoning, and com-
plex task execution. The integration of multimodal capabil-
ities into these models has further expanded the reach of
Al, enabling systems to process and generate diverse con-
tent across text, images, and video. Despite these advance-
ments, the real-world deployment of Al agents in human-in-
the-loop scenarios—where Al collaborates with humans in
completing physical tasks—remains an underexplored do-
main, particularly in dynamic and interactive environments.
(Fig. 1).

The Institutional Review Board (IRB) of our institution approved this
human subjects research before the start of the study.
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[15:24:47] Agent: Place tourniquet over
affected extremity 2-3 inches above wound
site. Let me know when you're finished.
[15:24:58] Human: Ok | did it. what's next
[15:25:02] Agent: Pull tourniquet tight.
[15:25:32] Human: How tight should | pull?

Physical Manipulation Tasks

Figure 1. Workflow of an interactive Al agent guiding a human
through a physical task. The human performs the task (e.g., apply-
ing a tourniquet) in the physical world while communicating with
the Al agent, which is delivered through an AR headset.

Human-AI collaboration in assisted autonomy is emerg-
ing as a critical paradigm, with Al agents providing
context-aware guidance and interactive feedback to en-
hance human task completion [4, 7, 8, 13, 15, 18, 20,
25]. While Al-powered agents have demonstrated effec-
tiveness in controlled settings, their application in high-
stakes, physically dynamic tasks—such as medical proce-
dures—presents unique challenges. Augmenting human
cognition through Al-equipped augmented reality (AR)
agents holds promise for both professional domains, such
as battlefield medicine and surgical assistance, and every-
day activities, such as cooking and assembly. However, a
major limitation in advancing Al-assisted collaboration is
the absence of structured evaluation frameworks that rig-
orously assess Al agents’ effectiveness in human-in-the-



loop task completion beyond traditional automation bench-
marks [8, 10, 24].

To address this gap, we introduce a comprehensive eval-
uation framework specifically designed to assess Al-guided
physical task completion in real-world human-AlI collabo-
ration. While prior evaluation methods largely focus on
language models or simulated tasks, they fail to capture
the complexities of embodied assistance—such as inter-
active guidance, execution quality, user experience, and
learning outcomes. Our framework defines key metrics
for quantifying Al effectiveness across these dimensions
and is grounded in a newly collected multimodal dataset of
human-AlI interaction sessions. The dataset includes syn-
chronized egocentric and exocentric video, audio, and rich
annotations of step-level outcomes, error categories, and
natural language rationales—enabling fine-grained analysis
of procedural support and user adaptation. While not a uni-
versal benchmark, this framework represents a critical first
step toward rigorous and reproducible evaluation of embod-
ied Al agents in physical environments.

To support this framework, we develop an Al-powered
system for real-world physical task collaboration. At its
core it is a perceptually enabled agent that integrates AR-
based guidance with real-time task monitoring and feed-
back. This system allows us to perform and evaluate Al-
guided assistance across a range of tasks, from everyday ac-
tivities to high-stakes domains such as battlefield medicine.
Building on this foundation, we conduct extensive human
studies to analyze how users interact with Al-guided sys-
tems in physical environments. Our studies examine adap-
tation to Al workflows, the cognitive impact of interactive
guidance, and the design principles that support effective
collaboration. These insights deepen our understanding of
Al agents as collaborative partners rather than passive au-
tomation tools and highlight critical challenges and oppor-
tunities in real-world deployment.

Our contributions are threefold:

1. A structured evaluation framework and dataset for mea-
suring Al-guided physical task performance;

An interactive AR-based Al agent that serves as a key
reference for real-world Al task guidance;

Empirical findings and dataset from human studies on
performance, experience, and workflow design in Al-

assisted task completion.

2.

2. Related Work

Foundation Models and AI Agents Recent advances
in Large Language Models (LLMs) have spurred the de-
velopment of Multimodal LLMs (MLLMs) capable of
handling inputs beyond text—such as images, audio,
and 3D data—with notable examples including OpenAl
ChatGPT [16], LLaVA [14], MiniGPT-4 [30], LLaMA-
Adapter [27], and Google’s Gemini [22]. These models ex-
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tend vision-language reasoning and are promising for task
guidance requiring contextual understanding. However, de-
spite strong performance in structured or virtual settings,
they often struggle in real-world human-in-the-loop scenar-
ios that demand physical adaptability and real-time inter-
action. While prior work like “Watch, Talk and Guide”
(WTaG) [3] explores foundation models’s zero-shot capa-
bility for cooking task guidance, they largely overlook the
need of efficient communication in more challenging do-
mains. In contrast, our work deploys a fully implemented
AR-equipped efficient Al agent with ad-hoc ML modules
for physical collaboration across domains—from cooking
to battlefield medicine—establishing a foundation for as-
sessing smoothness, robustness, and adaptability of Al in
human-Al interactions for professional scenarios.

Al Agents Evaluation Framework Evaluating Al sys-
tems is essential to ensure reliable performance in real-
world scenarios, especially as generative Al expands into
task-guidance applications.  Existing benchmarks such
as Big Bench Hard (BBH) [21], MMLU-PRO [24], and
GenAl-Bench [10] offer robust evaluations for language
and vision models but largely focus on virtual tasks. Simi-
larly, datasets like IFEval [19] and MuSR [29] test cross-
modal and instruction-following capabilities, yet fail to
capture the interactive and dynamic nature of real-world
human-AlI collaboration.

Task guidance systems require evaluation frameworks
that reflect physical interaction, real-time decision-making,
and user adaptation. While works like "Watch, Talk and
Guide” (WTaG) [3] collect valuable human-in-the-loop data
and assess user intent understanding, they primarily focus
on evaluating foundation models’ capabilities rather than
measuring the practical effectiveness of Al guidance sys-
tems.Our framework fills this gap by incorporating metrics
for task success, error reduction, user satisfaction, and ro-
bustness, enabling a more practical and holistic evaluation
of embodied Al agents.

3. Evaluation Framework for Human-AI Col-
laborative Task Completion

Our framework evaluates both task completion performance
and the quality of user interaction in Al-assisted task guid-
ance scenarios. It is supported by a multimodal dataset
comprising synchronized egocentric and exocentric record-
ings, with detailed annotations from both Al-assisted and
unassisted task executions across multiple tasks.

3.1. Task Completion Quality Assessment

This component evaluates the Al assistant’s ability to pro-
vide accurate and timely guidance. We define the following
metrics:



* Success Rate Metrics: We measure success at two levels:
— Macro Success Rate (M-SR): This metric calculates the
average success rate across all samples from all tasks
combined. It provides a global view of the AI’s effec-
tiveness across the entire dataset.

— Micro Success Rate (u-SR): This metric first calcu-
lates the average success rate within each task sepa-
rately, then averages these task-specific rates. This ap-
proach ensures equal weighting of tasks regardless of
their sample sizes and provides insight into the AI’s
performance across different task types.

Both metrics help quantify the efficiency gains (or losses)

introduced by the Al assistant, especially when compared

to traditional (non-Al) methods. Higher success rates in-
dicate that the Al is successfully helping users navigate
tasks from start to finish.

e Time to Completion: We measure the average time taken
to complete the task with Al assistance compared to unas-
sisted settings. A reduction in completion time suggests
that the Al is effectively streamlining the task process.

¢ Step Error Rate (S-ER): We track errors from the user’s
perspective, both when guided by Al and when not. We
categorize errors into two main types:

— Critical Errors: These are errors that render the com-
pletion of the task impossible. They represent signifi-
cant deviations from the correct procedure that cannot
be recovered from without starting over.

— Step-Specific Errors: These are more fine-grained er-
rors that occur within individual steps of the task.
These errors could be Wrong Action (e.g., stirring in-
stead of folding), Wrong Object (e.g., using salt in-
stead of sugar), Wrong State (e.g., over-beating eggs)
or Other step-specific errors that don’t fall into the
above categories.

¢ Error Reduction: We report the Step Error Rate (S-ER)
for both Al-assisted and unassisted task completion con-
ditions. These measurements allow us to assess the Al’s
impact on error reduction across different guidance meth-
ods.

e Step-Guidance Alignment: This measures the rate at
which the AI provides instructions that correctly corre-
spond to the current step of the task. High alignment
indicates that the Al is maintaining awareness of the
user’s progress and providing contextually appropriate
guidance.

3.2. User Interaction Quality Evaluation

User experience is paramount to the success of Al agents,
and it will eventually determine their effectiveness and
adoption. Evaluating user interaction metrics is essential
for understanding how users engage with the agent, as well
as for identifying areas where the system can be improved
to better meet user needs and expectations.

* Clarity: Users rate the clarity and comprehensibility of
Al-generated instructions. This metric is crucial for un-
derstanding how well the AI communicates its guidance
and whether users can easily interpret the provided in-
structions.

* Proactivity: We evaluate the AI’s ability to offer timely,
unsolicited guidance. Users assess these interventions
based on their helpfulness and appropriateness to the cur-
rent task context.

* Ease of Use: Users evaluate the intuitiveness and user-
friendliness of the Al interface. This metric helps assess
the accessibility of the AI assistant to users of varying
technical expertise.

* Satisfaction: This holistic metric captures the user’s gen-
eral impression of the AI’s performance and usefulness.

* Relevance: We measure this through query-response ap-
propriateness - how well the Al provides relevant answers
to user questions and maintains context-appropriate guid-
ance.

* Overall Score: A comprehensive metric combining all
aspects of the user interaction experience.

3.3. Cost-Controlled Performance Evaluation

Balancing Al performance with computational and finan-
cial costs is crucial for scalable deployment, particularly
in human-in-the-loop and constrained environments such as
battlefield medicine and home assistance. High-performing
Al agents, especially those leveraging Large Language
Models (LLMs), can incur significant inference costs that
may not always translate to proportional benefits [9]. To
address this, we introduce a Cost vs Performance eval-
uation framework, incorporating Inference Cost, which
quantifies computational and monetary expenses, and Cost-
Performance Pareto Efficiency, which identifies optimal
trade-offs between resource consumption and guidance ef-
fectiveness.

3.4. Evaluation Methodology

Our evaluation process involves collecting video recordings
of tasks, Al-user conversation logs, and post-task user sur-
veys.

Evaluation points are systematically extracted from var-
ious stages of the interaction, including user inputs, Al re-
sponses, and task execution events. This approach allows
us to capture the dynamic nature of the interaction, assess
the AI’s performance in various scenarios, and identify po-
tential blind spots in both the AI's guidance and the user’s
awareness. By including unnoticed errors as evaluation
points, we can assess the Al’s ability to detect and prevent
mistakes, as well as the user’s reliance on the system for
error prevention.

The functional metrics are calculated based on objective
measures from the recordings and logs, while the user inter-
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Figure 2. Overview of the Baseline Interactive Agent for Physical Task Assistance.

action metrics combine objective measures with subjective
user ratings from the surveys. This comprehensive data col-
lection and analysis strategy ensures a thorough evaluation
of the Al assistant’s performance across different aspects of
task guidance.

By providing clear definitions and measurement methods
for each metric, we ensure that this framework can be con-
sistently applied and replicated in future studies, facilitating
comparative analysis across different Al assistant imple-
mentations. This standardized approach will contribute to
the ongoing improvement of Al-assisted task guidance sys-
tems, ultimately leading to more effective and user-friendly
solutions.

4. Human-AI Collaborative Agent

We explore the application of pre-trained Large Language
and Vision Foundation Models on this problem without
task-specific training. We propose an Al agent architecture
and three different configurations to extract visual and dia-
log context:

4.1. System Design and Development

Our task guidance agent (Figure 2) is built upon a modular,
multi-process architecture designed for robustness, scalabil-
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ity, and real-time performance. At the core of our agent
is the Conductor Process, which orchestrates the overall
workflow. All major components—including Perception,
LLM, Uls, TTS, ASR, and Timer—communicate directly
with the Conductor but also with each other through it. It
listens to processed input information from the environment
and user, performing node transitions based on predefined
conditions. This process effectively acts as a state machine,
managing the flow of the task guidance and ensuring seam-
less task progression and coordination across all system
components.

At the beginning of each new user session, the Conduc-
tor accesses the Task Library to build a task graph based
on the specific task the user has indicated they plan on per-
forming. This task graph, constructed from the information
stored in the Task Library, serves as the backbone for guid-
ing the user through the process.

Working in tandem with the Conductor is the Data Man-
ager Process. This component, represented as the Sensor
Process and Shared Memory in our architecture, contin-
uously pulls data from sensors and peripherals, storing it
in shared memory and making it readily accessible to other
processes. By centralizing data handling, we ensure that all
components of the system have access to the most up-to-



date information, crucial for maintaining coherence in task
guidance. Output is managed by the Uls (User Interfaces),
with the HL2 Output Process rendering information to the
Hololens 2,providing an immersive augmented reality ex-
perience for the user, and the Naive OQutput Process dis-
playing it on a separate monitor(debugging, monitoring).

Visual understanding is handled by the Active Percep-
tion Process, which continuously processes visual data
based on the current node’s information. This adaptive
approach allows the system to focus its computational re-
sources on the most relevant aspects of the visual input,
enhancing efficiency and accuracy in scene interpretation.
Importantly, the Perception Service can detect if a user per-
forms a step out of sequence, triggering an alert to the Con-
ductor, which then prompts the Al agent to enter a conver-
sation mode. In this mode, the Al interacts with the user to
assess the situation and determine if there is an issue that
needs to be addressed. We specifically conduct the evalua-
tion on this Process in Section 6.3.

Natural language processing is a key component of our
system, managed by the LLM Process. This process pro-
vides critical services such as categorizing free-form user
input and rephrasing canonical information into natural lan-
guage. By leveraging advanced language models, we enable
intuitive interaction between the user and the system.

Audio input and output are handled by two specialized
processes. The ASR Process constantly processes audio
from the microphone, broadcasting processed text when
necessary. This allows for hands-free interaction, crucial
in many task guidance scenarios. Complementing this, the
TTS Process converts text to audio upon request from the
Conductor process, pushing it to the Output process for
vocalization. This enables the system to provide auditory
guidance, enhancing the multi-modal nature of the interac-
tion.

The Timer Service monitors task duration and can in-
terrupt the user if a predefined time threshold is exceeded.
When triggered, the Timer Service prompts the Al agent to
enter conversation mode, engaging the user to check if any-
thing is wrong or if assistance is needed. This feature en-
sures safety and efficiency in time-sensitive tasks or when
prolonged inactivity might indicate a problem.

A Logger Process continuously accesses the Shared
Memory, recording all relevant data streams to the Data
Repository. This comprehensive logging facilitates sys-
tem analysis, performance optimization, and continuous
improvement of the task guidance algorithms.

The architecture leverages shared memory and ZeroMQ
for inter-process communication, optimizing both high-
throughput data sharing and low-latency message passing.
This hybrid approach ensures efficient data transfer and sys-
tem responsiveness, which are critical for real-time task
guidance.
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ego-centric view exo-centric view

Figure 3. Example from our dataset. Left: Microsoft Hololens 2
view. Right: GoPro Hero 12 view.

5. Dataset Collection

We captured synchronized multi-modal egocentric-
exocentric view recordings for 4 tasks by 12 participants.
In addition to step time boundaries, we provide mistake
detection annotations at task and step level with natural
language descriptions. These media and annotations are
not only useful for human action understanding training but
also human-AlI collaboration.

Participants We recruited 12 participants (6 male, 6 fe-
male; ages 19-29) from a U.S.-based university. The cohort
was ethnically and culturally diverse: 5 participants iden-
tified as Chinese (including 3 international students and 2
U.S.-raised), 3 as Indian/South Asian, 3 as white Ameri-
can, and 1 as mixed Chinese—European descent. Academic
standing ranged from first-year undergraduate to doctoral
level, with 7 undergraduates and 5 graduate students (3 M.S.
and 1 Ph.D.) whose majors spanned robotics, computer
and electrical engineering, aerospace engineering, neuro-
science, and kinesiology, with several pursuing dual con-
centrations. All participants reported normal or corrected-
to-normal vision. This breadth of cultural background and
disciplinary expertise provided a rich and varied pool for
data collection.

Tasks Each participant completed four tasks that span
everyday cooking to battlefield medicine: make a cup of
tea, prepare pinwheel sandwiches, prepare a dessert que-
sadilla, and apply a tourniquet. For every task we evaluated
three assistance conditions. In the Unassisted participants
were provided only with a task name and a brief goal de-
scription, relying solely on prior knowledge. In the Paper-
Instructions condition users were given a detailed, step-
by-step description of the task. This method represents tra-
ditional cookbook-style instructions In the AI-Agent con-
dition, participants receive interactive, context-aware guid-
ance via our AR-based Al system (Sec. 4).

Recordings There 144 sessions in total where one ses-
sion records one participant performing one task with one
type of instruction. For each session, we recorded a 3-rd
person view video of the participant’s actions with GoPro
Hero 12 Black camera. For sessions Al instruction, we
also recorded the participant’s first-person view and dia-



logue with a Microsoft Hololens 2 with data from all sen-
sors, including the front camera, 4 side cameras, depth sen-
sor, IMU, and audio. The average duration of sessions are
4.7342.01 minutes, resulting in a total of 15.15 hours of
valid experiment duration (the duration of exo-centric view
recordings of all sessions). We record all sessions in one
room. An illustration of egocentric-exocentric view (front
RGB camera) of “Pinwheel” task is illustrated in Fig. 3.

Annotations  Two  trained  annotators  with
undergraduate-level engineering backgrounds labeled
the video recordings, following a predefined protocol. The
annotation process was conducted using the VGG Image
Annotator (VIA) tool [5, 6], which allows for efficient
video annotation and supports temporal segmentation.
Our annotations capture five complementary data fields,
each stored in a machine-readable JSON file to facilitate
downstream analysis: (1) Task success (Boolean) and a
free-form comment string when it is a failure. (2) Task
duration is recorded as two floating-point timestamps
(start_sec, end_sec) that mark the interval from the
participant’s initial engagement with the instructions to
their explicit confirmation of task completion. (3) Step
boundaries are entries where each contains start_sec
and an end_sec. A new step begins when there is
unmistakable visual evidence of its tacit action (e.g.,
the hand moves toward a paper towel to initiate “clean
knife”). (4) Out-of-order mistake is flagged by comparing
the temporal order of the annotated steps against the
canonical recipe order. (5) Fine-grained mistakes inside
a step—such as using the wrong tool or mismeasuring
an ingredient—are logged as a list of {"step #":
"free—-form description"} objects. (6) Synchro-
nization—for sessions with egocentric and exocentric
recordings, we manually synchronize the two streams by
annotating the time offset, ensuring accurate temporal
alignment across views.

6. Human Study on AI-Assisted Task Collabo-
ration

We conducted a structured user study to evaluate how differ-
ent guidance methods influence physical task performance,
learning outcomes, and user experience. Participants com-
pleted real-world tasks using the same four scenarios and
guidance conditions introduced in Section 5.

6.1. Experimental Design

Each participant completed the same task three times, once
under each of the three guidance conditions: Unassisted
(UA), Paper Instructions (PI), and AI Agent (AI). To con-
trol for ordering effects, we employed full counterbalancing
across the six possible permutations (e.g., UA — PI — Al
UA — Al — PI, etc.), with participants randomly assigned
to one of the orders.
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Tasks were selected from those used in dataset collec-
tion: three recipe-style procedures and one medical sce-
nario. We strategically chose tasks to span a range of com-
plexity levels. The recipe tasks—make tea, pinwheels, and
dessert quesadilla—are commonly used to evaluate instruc-
tional systems due to their clear temporal structure and ob-
jective success criteria. To validate our system’s applicabil-
ity in higher-stakes domains, we included tourniquet appli-
cation, a significantly more complex and safety-critical task
from battlefield medicine.

Participants. This study involved 12 participants (dis-
tinct from annotators), each completing multiple task vari-
ants under different guidance conditions.

Exposure Consideration. Since each participant per-
formed the same task multiple times under different guid-
ance methods, performance may be influenced not only by
the guidance condition itself but also by prior exposure to
the task. To account for this, our analysis considers both
first-time and repeated attempts, allowing us to examine
learning effects and how prior experience with one method
impacts performance under another.

6.2. Evaluation Results

We report the performance of different methods of task
guidance in terms of functional performance, user interac-
tion quality, and skill acquisition. We present the results for
physical task completion according to our proposed evalua-
tion framework. Results are interpreted using our proposed
evaluation framework and analyzed with respect to partici-
pants’ task exposure.

Task Completion Quality Assessment. The task per-
formance assessment results, presented in Table 1, clearly
demonstrate the effectiveness of Al-assisted guidance.

When users attempted tasks the first time without any
prior training (Training=None), those guided by the Al sys-
tem achieved a significantly higher Macro Success Rate (M-
SR) of 70%, compared to only 20% with unassisted guid-
ance (UA) and 28.57% with paper instructions (PI). The
Step Error Rate (S-ER) followed a similar trend, favoring
Al at 16.43%, over PI (18.37%) and UA (38.75%). While
Al-guided tasks took longer to complete (186.54 seconds),
the tradeoff favored higher success and lower error.

We also examined how initial exposure to Al guidance
influenced subsequent performance using other methods.

Specifically, Table | presents data on skill acquisition
across different guidance methods.

The key findings are in the ”AI” condition, where partic-
ipants used Al assistance in their first trial:

* Subsequent unassisted (UA) performance dramatically
improved to 66.67% success rate, with errors reduced to
18.45%.

* With paper instructions (PI) after Al exposure, perfor-
mance further increased to 75% success and only 6.70%



Training Guidance M-SR1{ S-ER| Time(s) |
UA 20.00%  38.75% 106.26
None PI 28.57%  18.37% 144.29
Al 70.00%  16.43% 186.54
Al UA 66.67%  18.45% 104.77
PI 75.00%  6.70% 132.29
PI UA 50.00%  20.09% 99.80
Al 80.00%  5.00% 186.69
UA Al 100.00%  0.00% 217.49
PI 60.00%  25.00% 97.82

Table 1. Task Performance Assessment results. We present Macro
Success Rate (M-SR), Step Error Rate (S-ER), and task duration
(Time).
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Figure 4. Micro Task Performance Assessment results. For all
tasks, Al guidance help user’s achieve better performance even for
challenging professional tasks like Applying Tourniquet in battle
field medicine.
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It is plausible that task repetition alone improves per-
formance, as participants become more familiar with task
structure and physical actions. However, we observe that
improvements following Al exposure are notably greater
than those following UA or PI. The interactive and context-
aware support provided by the Al system appears to facili-
tate more effective learning, enabling users to perform bet-
ter in subsequent tasks regardless of the guidance method
used. This enhanced skill acquisition underscores the po-
tential of Al agents not just as task assistants, but as effec-
tive training tools for physical manipulation tasks.

The Micro Task Performance results shown in Figure
4 reinforces this trend across individual tasks, including
the most complex (tourniquet application), where Al con-
sistently enabled better performance regardless of task do-
main.

User Interaction Quality Evaluation. We report user
perceptions regarding the helpfulness of starting with the
Al assistant method in completing subsequent tasks using
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other methods. The majority of participants, 77.8%, re-
ported finding the AI assistant method to be more helpful
when transitioning to other methods. This suggests that the
Al assistant may have provided users with a strong foun-
dational understanding or approach that benefitted them in
subsequent tasks. On the other hand, 22.2% of participants
felt that starting with the Al assistant method didn’t make
a difference in their ability to complete the other methods,
indicating that, for some users, the AI’s influence was neu-
tral. Notably, no participants found the Al assistant method
to be less helpful.

These findings indicate that the AI assistant method gen-
erally provided a positive learning experience or offered in-
sights that users could apply to other task completion meth-
ods. The high percentage of users finding it more helpful
suggests that the Al assistant may be effective in training or
familiarizing users with tasks, improving their performance
even when the Al is not directly guiding them, claim that
is substantiated in the quantitative analysis for skill acquisi-
tion.

Question Score Logit (5) T Score Percentage 1
Clarity 342 68.33%
Proactivity 3.17 63.33%
Ease of use 3.08 61.67%
Satisfaction 3.00 60.00%
Relevance 2.67 53.33%
Overall 3.07 61.33%

Table 2. User Interaction Quality Metrics.

The user interaction quality metrics presented in Table
2 provide insights into various aspects of the Al assistant’s
performance as perceived by users. The metrics cover clar-
ity, proactivity, ease of use, satisfaction, and relevance, each
rated on a 5-point scale. The results indicate that the Al as-
sistant performed best in providing clear instructions, with
a score of 3.42 out of 5 (68.33%). Proactivity in guiding
users through tasks was also well-received, scoring 3.17
(63.33%). The ease of use and overall satisfaction were
rated slightly above average, both scoring around 3 out of
5 (61.67% and 60.00% respectively). The relevance of the
AT’s responses to user queries received the lowest score of
2.67 (53.33%), suggesting an area for potential improve-
ment. The overall performance, calculated as the mean
score across all questions, was 3.07 (61.33%), indicating
that while the Al assistant generally met user expectations,
there is room for enhancement.

Cost. Our Al task guidance system balances cost and
performance efficiently, operating on a Lenovo ThinkPad
P16 Gen 2 with an NVIDIA RTX 5000 GPU and a Mi-
crosoft HoloLens 2, totaling $9,019. Each task session
incurs an average inference cost of $0.002 using Ope-
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nAI’s ChatGPT [17], achieving a inference cost-to-success
rate ratio [8] of 0.000029 $/%, demonstrating strong cost-
effectiveness in Al-assisted task completion.

6.3. Perception

To fully understand an Al agent’s potential in task guidance,
it is crucial to evaluate its perception abilities separately.
This isolation allows us to independently assess how well
it can interpret and respond to visual inputs from the envi-
ronment, a critical factor in real-time guidance. To that end,
we integrated two methods in our system, one adopting a
zero-shot approach, and the other a supervised.

6.3.1. Scene Description (Sce)

This method enhances situational awareness by generating a
free-text scene description using a combination of an object
detector, a captioning module, and a Large Language Model
(LLM).

As we can see in Figure 5 (a), we apply an object de-
tector, here we use DINO [11], to identify regions of in-
terest (ROI) in the latest captured frame. These ROI are
then fed into a captioner, we experiment with BLIP-2 [12]
and LaViLa [28], along with prompts to generate descrip-
tions for each region. LaVilLa which, unlike BLIP-2, takes
a sequence of frames as input, allowing it to better capture
temporal dynamics of the task completion.

The resulting descriptions from either captioner, along
with their corresponding region coordinates, are provided
as a prompt to a Large Language Model (LLM) (GPT-3.5-
turbo), together with a full list of the task steps. The LLM
then maps the individual descriptions to a holistic scene
state recognition acting as a task step classifier but also pro-
viding a comprehensive scene description with positional
information.

This zero-shot approach allows the system to generalize
to diverse or unfamiliar environments where task-specific
data may not be available. The classification accuracy from
this approach is limited by the constraints imposed by the
different components in the pipeline. For instance, the ob-
ject detection and captioning stages, while effective at gen-
erating rich and detailed scene descriptions, introduce noise
and variability that can affect the LLM’s ability to accu-
rately classify task steps.
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6.3.2. ResNet Step Classifier (Cls)

To track task progress more accurately, we implement a
ResNet-based step classifier. Although it requires task-
specific training data, it is particularly suited for sce-
narios where computational resources are limited, such
as in remote environments, making it valuable for task-
guidance applications in specialized domains like battlefield
medicine.

As expected, Cls outperforms Sce across tasks, owing to
its task-specific training and the in-distribution test environ-
ment data(Figure 5 (b)). However, Sce accurately detects
salient regions (not quantitatively evaluated here), which
could prove highly valuable in future iterations of our sys-
tem. Additionally, fine-tuning the captioner is likely to yield
significant performance improvements, which we plan to
explore in future work.

7. Conclusion

For human-Al collaborative task completion, we introduced
a comprehensive evaluation framework and developed an
AR-equipped Al agent for interactive guidance. Our human
studies validate the framework’s effectiveness, providing
valuable insights into Al-assisted collaboration from both
a technical design and human learning perspective across
diverse task scenarios. First, the results demonstrate that
our Al agent significantly improves task success and re-
duces errors. Additionally, our studies offer deeper in-
sights into human skill development in Al-assisted settings,
revealing how Al guidance shapes learning curves, task
adaptation, and user confidence. These findings underscore
AT’s potential not only for improving task performance but
also for facilitating structured skill acquisition. Further-
more, we contribute to the research community by sharing
anonymized multimodal data from our human study, along
with expert-labeled task assessments, enabling further anal-
ysis and benchmarking. Based on our findings, future work
can explore intuitive human query interfaces, advanced per-
ception models, and proactive intervention strategies to en-
hance adaptability and user experience in human-Al collab-
oration for task completion.
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