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Abstract

Effective human-AI collaboration for physical task com-

pletion has significant potential in both everyday activities

and professional domains. AI agents equipped with in-

formative guidance can enhance human performance, but

evaluating such collaboration remains challenging due to

the complexity of human-in-the-loop interactions. In this

work, we introduce an evaluation framework and a multi-

modal dataset of human-AI interactions designed to assess

how AI guidance affects procedural task performance, er-

ror reduction and learning outcomes. Besides, we develop

an augmented reality (AR)-equipped AI agent that provides

interactive guidance in real-world tasks, from cooking to

battlefield medicine. Through human studies1, we share

empirical insights into AI-assisted human performance and

demonstrate that AI-assisted collaboration improves task

completion.

1. Introduction

Recent progress in Artificial Intelligence (AI) have been

driven by the rapid development of Large Language Mod-

els (LLMs) such as GPT [16], Claude [1], Gemini [22],

Qwen [2, 26] and LLaMA [23], which exhibit impressive

capabilities in language understanding, reasoning, and com-

plex task execution. The integration of multimodal capabil-

ities into these models has further expanded the reach of

AI, enabling systems to process and generate diverse con-

tent across text, images, and video. Despite these advance-

ments, the real-world deployment of AI agents in human-in-

the-loop scenarios—where AI collaborates with humans in

completing physical tasks—remains an underexplored do-

main, particularly in dynamic and interactive environments.

(Fig. 1).

1The Institutional Review Board (IRB) of our institution approved this

human subjects research before the start of the study.

Figure 1. Workflow of an interactive AI agent guiding a human

through a physical task. The human performs the task (e.g., apply-

ing a tourniquet) in the physical world while communicating with

the AI agent, which is delivered through an AR headset.

Human-AI collaboration in assisted autonomy is emerg-

ing as a critical paradigm, with AI agents providing

context-aware guidance and interactive feedback to en-

hance human task completion [4, 7, 8, 13, 15, 18, 20,

25]. While AI-powered agents have demonstrated effec-

tiveness in controlled settings, their application in high-

stakes, physically dynamic tasks—such as medical proce-

dures—presents unique challenges. Augmenting human

cognition through AI-equipped augmented reality (AR)

agents holds promise for both professional domains, such

as battlefield medicine and surgical assistance, and every-

day activities, such as cooking and assembly. However, a

major limitation in advancing AI-assisted collaboration is

the absence of structured evaluation frameworks that rig-

orously assess AI agents’ effectiveness in human-in-the-
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loop task completion beyond traditional automation bench-

marks [8, 10, 24].

To address this gap, we introduce a comprehensive eval-

uation framework specifically designed to assess AI-guided

physical task completion in real-world human-AI collabo-

ration. While prior evaluation methods largely focus on

language models or simulated tasks, they fail to capture

the complexities of embodied assistance—such as inter-

active guidance, execution quality, user experience, and

learning outcomes. Our framework defines key metrics

for quantifying AI effectiveness across these dimensions

and is grounded in a newly collected multimodal dataset of

human-AI interaction sessions. The dataset includes syn-

chronized egocentric and exocentric video, audio, and rich

annotations of step-level outcomes, error categories, and

natural language rationales—enabling fine-grained analysis

of procedural support and user adaptation. While not a uni-

versal benchmark, this framework represents a critical first

step toward rigorous and reproducible evaluation of embod-

ied AI agents in physical environments.

To support this framework, we develop an AI-powered

system for real-world physical task collaboration. At its

core it is a perceptually enabled agent that integrates AR-

based guidance with real-time task monitoring and feed-

back. This system allows us to perform and evaluate AI-

guided assistance across a range of tasks, from everyday ac-

tivities to high-stakes domains such as battlefield medicine.

Building on this foundation, we conduct extensive human

studies to analyze how users interact with AI-guided sys-

tems in physical environments. Our studies examine adap-

tation to AI workflows, the cognitive impact of interactive

guidance, and the design principles that support effective

collaboration. These insights deepen our understanding of

AI agents as collaborative partners rather than passive au-

tomation tools and highlight critical challenges and oppor-

tunities in real-world deployment.

Our contributions are threefold:

1. A structured evaluation framework and dataset for mea-

suring AI-guided physical task performance;

2. An interactive AR-based AI agent that serves as a key

reference for real-world AI task guidance;

3. Empirical findings and dataset from human studies on

performance, experience, and workflow design in AI-

assisted task completion.

2. Related Work

Foundation Models and AI Agents Recent advances

in Large Language Models (LLMs) have spurred the de-

velopment of Multimodal LLMs (MLLMs) capable of

handling inputs beyond text—such as images, audio,

and 3D data—with notable examples including OpenAI

ChatGPT [16], LLaVA [14], MiniGPT-4 [30], LLaMA-

Adapter [27], and Google’s Gemini [22]. These models ex-

tend vision-language reasoning and are promising for task

guidance requiring contextual understanding. However, de-

spite strong performance in structured or virtual settings,

they often struggle in real-world human-in-the-loop scenar-

ios that demand physical adaptability and real-time inter-

action. While prior work like “Watch, Talk and Guide”

(WTaG) [3] explores foundation models’s zero-shot capa-

bility for cooking task guidance, they largely overlook the

need of efficient communication in more challenging do-

mains. In contrast, our work deploys a fully implemented

AR-equipped efficient AI agent with ad-hoc ML modules

for physical collaboration across domains—from cooking

to battlefield medicine—establishing a foundation for as-

sessing smoothness, robustness, and adaptability of AI in

human-AI interactions for professional scenarios.

AI Agents Evaluation Framework Evaluating AI sys-

tems is essential to ensure reliable performance in real-

world scenarios, especially as generative AI expands into

task-guidance applications. Existing benchmarks such

as Big Bench Hard (BBH) [21], MMLU-PRO [24], and

GenAI-Bench [10] offer robust evaluations for language

and vision models but largely focus on virtual tasks. Simi-

larly, datasets like IFEval [19] and MuSR [29] test cross-

modal and instruction-following capabilities, yet fail to

capture the interactive and dynamic nature of real-world

human-AI collaboration.

Task guidance systems require evaluation frameworks

that reflect physical interaction, real-time decision-making,

and user adaptation. While works like ”Watch, Talk and

Guide” (WTaG) [3] collect valuable human-in-the-loop data

and assess user intent understanding, they primarily focus

on evaluating foundation models’ capabilities rather than

measuring the practical effectiveness of AI guidance sys-

tems.Our framework fills this gap by incorporating metrics

for task success, error reduction, user satisfaction, and ro-

bustness, enabling a more practical and holistic evaluation

of embodied AI agents.

3. Evaluation Framework for Human-AI Col-

laborative Task Completion

Our framework evaluates both task completion performance

and the quality of user interaction in AI-assisted task guid-

ance scenarios. It is supported by a multimodal dataset

comprising synchronized egocentric and exocentric record-

ings, with detailed annotations from both AI-assisted and

unassisted task executions across multiple tasks.

3.1. Task Completion Quality Assessment

This component evaluates the AI assistant’s ability to pro-

vide accurate and timely guidance. We define the following

metrics:
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• Success Rate Metrics: We measure success at two levels:

– Macro Success Rate (M-SR): This metric calculates the

average success rate across all samples from all tasks

combined. It provides a global view of the AI’s effec-

tiveness across the entire dataset.

– Micro Success Rate (μ-SR): This metric first calcu-

lates the average success rate within each task sepa-

rately, then averages these task-specific rates. This ap-

proach ensures equal weighting of tasks regardless of

their sample sizes and provides insight into the AI’s

performance across different task types.

Both metrics help quantify the efficiency gains (or losses)

introduced by the AI assistant, especially when compared

to traditional (non-AI) methods. Higher success rates in-

dicate that the AI is successfully helping users navigate

tasks from start to finish.

• Time to Completion: We measure the average time taken

to complete the task with AI assistance compared to unas-

sisted settings. A reduction in completion time suggests

that the AI is effectively streamlining the task process.

• Step Error Rate (S-ER): We track errors from the user’s

perspective, both when guided by AI and when not. We

categorize errors into two main types:

– Critical Errors: These are errors that render the com-

pletion of the task impossible. They represent signifi-

cant deviations from the correct procedure that cannot

be recovered from without starting over.

– Step-Specific Errors: These are more fine-grained er-

rors that occur within individual steps of the task.

These errors could be Wrong Action (e.g., stirring in-

stead of folding), Wrong Object (e.g., using salt in-

stead of sugar), Wrong State (e.g., over-beating eggs)

or Other step-specific errors that don’t fall into the

above categories.

• Error Reduction: We report the Step Error Rate (S-ER)

for both AI-assisted and unassisted task completion con-

ditions. These measurements allow us to assess the AI’s

impact on error reduction across different guidance meth-

ods.

• Step-Guidance Alignment: This measures the rate at

which the AI provides instructions that correctly corre-

spond to the current step of the task. High alignment

indicates that the AI is maintaining awareness of the

user’s progress and providing contextually appropriate

guidance.

3.2. User Interaction Quality Evaluation

User experience is paramount to the success of AI agents,

and it will eventually determine their effectiveness and

adoption. Evaluating user interaction metrics is essential

for understanding how users engage with the agent, as well

as for identifying areas where the system can be improved

to better meet user needs and expectations.

• Clarity: Users rate the clarity and comprehensibility of

AI-generated instructions. This metric is crucial for un-

derstanding how well the AI communicates its guidance

and whether users can easily interpret the provided in-

structions.

• Proactivity: We evaluate the AI’s ability to offer timely,

unsolicited guidance. Users assess these interventions

based on their helpfulness and appropriateness to the cur-

rent task context.

• Ease of Use: Users evaluate the intuitiveness and user-

friendliness of the AI interface. This metric helps assess

the accessibility of the AI assistant to users of varying

technical expertise.

• Satisfaction: This holistic metric captures the user’s gen-

eral impression of the AI’s performance and usefulness.

• Relevance: We measure this through query-response ap-

propriateness - how well the AI provides relevant answers

to user questions and maintains context-appropriate guid-

ance.

• Overall Score: A comprehensive metric combining all

aspects of the user interaction experience.

3.3. Cost-Controlled Performance Evaluation

Balancing AI performance with computational and finan-

cial costs is crucial for scalable deployment, particularly

in human-in-the-loop and constrained environments such as

battlefield medicine and home assistance. High-performing

AI agents, especially those leveraging Large Language

Models (LLMs), can incur significant inference costs that

may not always translate to proportional benefits [9]. To

address this, we introduce a Cost vs Performance eval-

uation framework, incorporating Inference Cost, which

quantifies computational and monetary expenses, and Cost-

Performance Pareto Efficiency, which identifies optimal

trade-offs between resource consumption and guidance ef-

fectiveness.

3.4. Evaluation Methodology

Our evaluation process involves collecting video recordings

of tasks, AI-user conversation logs, and post-task user sur-

veys.

Evaluation points are systematically extracted from var-

ious stages of the interaction, including user inputs, AI re-

sponses, and task execution events. This approach allows

us to capture the dynamic nature of the interaction, assess

the AI’s performance in various scenarios, and identify po-

tential blind spots in both the AI’s guidance and the user’s

awareness. By including unnoticed errors as evaluation

points, we can assess the AI’s ability to detect and prevent

mistakes, as well as the user’s reliance on the system for

error prevention.

The functional metrics are calculated based on objective

measures from the recordings and logs, while the user inter-
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Figure 2. Overview of the Baseline Interactive Agent for Physical Task Assistance.

action metrics combine objective measures with subjective

user ratings from the surveys. This comprehensive data col-

lection and analysis strategy ensures a thorough evaluation

of the AI assistant’s performance across different aspects of

task guidance.

By providing clear definitions and measurement methods

for each metric, we ensure that this framework can be con-

sistently applied and replicated in future studies, facilitating

comparative analysis across different AI assistant imple-

mentations. This standardized approach will contribute to

the ongoing improvement of AI-assisted task guidance sys-

tems, ultimately leading to more effective and user-friendly

solutions.

4. Human-AI Collaborative Agent

We explore the application of pre-trained Large Language

and Vision Foundation Models on this problem without

task-specific training. We propose an AI agent architecture

and three different configurations to extract visual and dia-

log context:

4.1. System Design and Development

Our task guidance agent (Figure 2) is built upon a modular,

multi-process architecture designed for robustness, scalabil-

ity, and real-time performance. At the core of our agent

is the Conductor Process, which orchestrates the overall

workflow. All major components—including Perception,

LLM, UIs, TTS, ASR, and Timer—communicate directly

with the Conductor but also with each other through it. It

listens to processed input information from the environment

and user, performing node transitions based on predefined

conditions. This process effectively acts as a state machine,

managing the flow of the task guidance and ensuring seam-

less task progression and coordination across all system

components.

At the beginning of each new user session, the Conduc-

tor accesses the Task Library to build a task graph based

on the specific task the user has indicated they plan on per-

forming. This task graph, constructed from the information

stored in the Task Library, serves as the backbone for guid-

ing the user through the process.

Working in tandem with the Conductor is the Data Man-

ager Process. This component, represented as the Sensor

Process and Shared Memory in our architecture, contin-

uously pulls data from sensors and peripherals, storing it

in shared memory and making it readily accessible to other

processes. By centralizing data handling, we ensure that all

components of the system have access to the most up-to-
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date information, crucial for maintaining coherence in task

guidance. Output is managed by the UIs (User Interfaces),

with the HL2 Output Process rendering information to the

Hololens 2,providing an immersive augmented reality ex-

perience for the user, and the Naive Output Process dis-

playing it on a separate monitor(debugging, monitoring).

Visual understanding is handled by the Active Percep-

tion Process, which continuously processes visual data

based on the current node’s information. This adaptive

approach allows the system to focus its computational re-

sources on the most relevant aspects of the visual input,

enhancing efficiency and accuracy in scene interpretation.

Importantly, the Perception Service can detect if a user per-

forms a step out of sequence, triggering an alert to the Con-

ductor, which then prompts the AI agent to enter a conver-

sation mode. In this mode, the AI interacts with the user to

assess the situation and determine if there is an issue that

needs to be addressed. We specifically conduct the evalua-

tion on this Process in Section 6.3.

Natural language processing is a key component of our

system, managed by the LLM Process. This process pro-

vides critical services such as categorizing free-form user

input and rephrasing canonical information into natural lan-

guage. By leveraging advanced language models, we enable

intuitive interaction between the user and the system.

Audio input and output are handled by two specialized

processes. The ASR Process constantly processes audio

from the microphone, broadcasting processed text when

necessary. This allows for hands-free interaction, crucial

in many task guidance scenarios. Complementing this, the

TTS Process converts text to audio upon request from the

Conductor process, pushing it to the Output process for

vocalization. This enables the system to provide auditory

guidance, enhancing the multi-modal nature of the interac-

tion.

The Timer Service monitors task duration and can in-

terrupt the user if a predefined time threshold is exceeded.

When triggered, the Timer Service prompts the AI agent to

enter conversation mode, engaging the user to check if any-

thing is wrong or if assistance is needed. This feature en-

sures safety and efficiency in time-sensitive tasks or when

prolonged inactivity might indicate a problem.

A Logger Process continuously accesses the Shared

Memory, recording all relevant data streams to the Data

Repository. This comprehensive logging facilitates sys-

tem analysis, performance optimization, and continuous

improvement of the task guidance algorithms.

The architecture leverages shared memory and ZeroMQ

for inter-process communication, optimizing both high-

throughput data sharing and low-latency message passing.

This hybrid approach ensures efficient data transfer and sys-

tem responsiveness, which are critical for real-time task

guidance.

Figure 3. Example from our dataset. Left: Microsoft Hololens 2

view. Right: GoPro Hero 12 view.

5. Dataset Collection

We captured synchronized multi-modal egocentric-

exocentric view recordings for 4 tasks by 12 participants.

In addition to step time boundaries, we provide mistake

detection annotations at task and step level with natural

language descriptions. These media and annotations are

not only useful for human action understanding training but

also human-AI collaboration.

Participants We recruited 12 participants (6 male, 6 fe-

male; ages 19–29) from a U.S.-based university. The cohort

was ethnically and culturally diverse: 5 participants iden-

tified as Chinese (including 3 international students and 2

U.S.-raised), 3 as Indian/South Asian, 3 as white Ameri-

can, and 1 as mixed Chinese–European descent. Academic

standing ranged from first-year undergraduate to doctoral

level, with 7 undergraduates and 5 graduate students (3 M.S.

and 1 Ph.D.) whose majors spanned robotics, computer

and electrical engineering, aerospace engineering, neuro-

science, and kinesiology, with several pursuing dual con-

centrations. All participants reported normal or corrected-

to-normal vision. This breadth of cultural background and

disciplinary expertise provided a rich and varied pool for

data collection.

Tasks Each participant completed four tasks that span

everyday cooking to battlefield medicine: make a cup of

tea, prepare pinwheel sandwiches, prepare a dessert que-

sadilla, and apply a tourniquet. For every task we evaluated

three assistance conditions. In the Unassisted participants

were provided only with a task name and a brief goal de-

scription, relying solely on prior knowledge. In the Paper-

Instructions condition users were given a detailed, step-

by-step description of the task. This method represents tra-

ditional cookbook-style instructions In the AI-Agent con-

dition, participants receive interactive, context-aware guid-

ance via our AR-based AI system (Sec. 4).

Recordings There 144 sessions in total where one ses-

sion records one participant performing one task with one

type of instruction. For each session, we recorded a 3-rd

person view video of the participant’s actions with GoPro

Hero 12 Black camera. For sessions AI instruction, we

also recorded the participant’s first-person view and dia-
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logue with a Microsoft Hololens 2 with data from all sen-

sors, including the front camera, 4 side cameras, depth sen-

sor, IMU, and audio. The average duration of sessions are

4.73±2.01 minutes, resulting in a total of 15.15 hours of

valid experiment duration (the duration of exo-centric view

recordings of all sessions). We record all sessions in one

room. An illustration of egocentric-exocentric view (front

RGB camera) of “Pinwheel” task is illustrated in Fig. 3.

Annotations Two trained annotators with

undergraduate-level engineering backgrounds labeled

the video recordings, following a predefined protocol. The

annotation process was conducted using the VGG Image

Annotator (VIA) tool [5, 6], which allows for efficient

video annotation and supports temporal segmentation.

Our annotations capture five complementary data fields,

each stored in a machine-readable JSON file to facilitate

downstream analysis: (1) Task success (Boolean) and a

free-form comment string when it is a failure. (2) Task

duration is recorded as two floating-point timestamps

(start sec, end sec) that mark the interval from the

participant’s initial engagement with the instructions to

their explicit confirmation of task completion. (3) Step

boundaries are entries where each contains start sec

and an end sec. A new step begins when there is

unmistakable visual evidence of its tacit action (e.g.,

the hand moves toward a paper towel to initiate “clean

knife”). (4) Out-of-order mistake is flagged by comparing

the temporal order of the annotated steps against the

canonical recipe order. (5) Fine-grained mistakes inside

a step—such as using the wrong tool or mismeasuring

an ingredient—are logged as a list of {"step #":

"free-form description"} objects. (6) Synchro-

nization—for sessions with egocentric and exocentric

recordings, we manually synchronize the two streams by

annotating the time offset, ensuring accurate temporal

alignment across views.

6. Human Study on AI-Assisted Task Collabo-

ration

We conducted a structured user study to evaluate how differ-

ent guidance methods influence physical task performance,

learning outcomes, and user experience. Participants com-

pleted real-world tasks using the same four scenarios and

guidance conditions introduced in Section 5.

6.1. Experimental Design

Each participant completed the same task three times, once

under each of the three guidance conditions: Unassisted

(UA), Paper Instructions (PI), and AI Agent (AI). To con-

trol for ordering effects, we employed full counterbalancing

across the six possible permutations (e.g., UA → PI → AI,

UA → AI → PI, etc.), with participants randomly assigned

to one of the orders.

Tasks were selected from those used in dataset collec-

tion: three recipe-style procedures and one medical sce-

nario. We strategically chose tasks to span a range of com-

plexity levels. The recipe tasks—make tea, pinwheels, and

dessert quesadilla—are commonly used to evaluate instruc-

tional systems due to their clear temporal structure and ob-

jective success criteria. To validate our system’s applicabil-

ity in higher-stakes domains, we included tourniquet appli-

cation, a significantly more complex and safety-critical task

from battlefield medicine.

Participants. This study involved 12 participants (dis-

tinct from annotators), each completing multiple task vari-

ants under different guidance conditions.

Exposure Consideration. Since each participant per-

formed the same task multiple times under different guid-

ance methods, performance may be influenced not only by

the guidance condition itself but also by prior exposure to

the task. To account for this, our analysis considers both

first-time and repeated attempts, allowing us to examine

learning effects and how prior experience with one method

impacts performance under another.

6.2. Evaluation Results

We report the performance of different methods of task

guidance in terms of functional performance, user interac-

tion quality, and skill acquisition. We present the results for

physical task completion according to our proposed evalua-

tion framework. Results are interpreted using our proposed

evaluation framework and analyzed with respect to partici-

pants’ task exposure.

Task Completion Quality Assessment. The task per-

formance assessment results, presented in Table 1, clearly

demonstrate the effectiveness of AI-assisted guidance.

When users attempted tasks the first time without any

prior training (Training=None), those guided by the AI sys-

tem achieved a significantly higher Macro Success Rate (M-

SR) of 70%, compared to only 20% with unassisted guid-

ance (UA) and 28.57% with paper instructions (PI). The

Step Error Rate (S-ER) followed a similar trend, favoring

AI at 16.43%, over PI (18.37%) and UA (38.75%). While

AI-guided tasks took longer to complete (186.54 seconds),

the tradeoff favored higher success and lower error.

We also examined how initial exposure to AI guidance

influenced subsequent performance using other methods.

Specifically, Table 1 presents data on skill acquisition

across different guidance methods.

The key findings are in the ”AI” condition, where partic-

ipants used AI assistance in their first trial:

• Subsequent unassisted (UA) performance dramatically

improved to 66.67% success rate, with errors reduced to

18.45%.

• With paper instructions (PI) after AI exposure, perfor-

mance further increased to 75% success and only 6.70%
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Training Guidance M-SR ↑ S-ER ↓ Time(s) ↓

None

UA 20.00% 38.75% 106.26

PI 28.57% 18.37% 144.29

AI 70.00% 16.43% 186.54

AI
UA 66.67% 18.45% 104.77

PI 75.00% 6.70% 132.29

PI
UA 50.00% 20.09% 99.80

AI 80.00% 5.00% 186.69

UA
AI 100.00% 0.00% 217.49

PI 60.00% 25.00% 97.82

Table 1. Task Performance Assessment results. We present Macro

Success Rate (M-SR), Step Error Rate (S-ER), and task duration

(Time).

Micro Success Rate

Figure 4. Micro Task Performance Assessment results. For all

tasks, AI guidance help user’s achieve better performance even for

challenging professional tasks like Applying Tourniquet in battle

field medicine.

errors.

It is plausible that task repetition alone improves per-

formance, as participants become more familiar with task

structure and physical actions. However, we observe that

improvements following AI exposure are notably greater

than those following UA or PI. The interactive and context-

aware support provided by the AI system appears to facili-

tate more effective learning, enabling users to perform bet-

ter in subsequent tasks regardless of the guidance method

used. This enhanced skill acquisition underscores the po-

tential of AI agents not just as task assistants, but as effec-

tive training tools for physical manipulation tasks.

The Micro Task Performance results shown in Figure

4 reinforces this trend across individual tasks, including

the most complex (tourniquet application), where AI con-

sistently enabled better performance regardless of task do-

main.

User Interaction Quality Evaluation. We report user

perceptions regarding the helpfulness of starting with the

AI assistant method in completing subsequent tasks using

other methods. The majority of participants, 77.8%, re-

ported finding the AI assistant method to be more helpful

when transitioning to other methods. This suggests that the

AI assistant may have provided users with a strong foun-

dational understanding or approach that benefitted them in

subsequent tasks. On the other hand, 22.2% of participants

felt that starting with the AI assistant method didn’t make

a difference in their ability to complete the other methods,

indicating that, for some users, the AI’s influence was neu-

tral. Notably, no participants found the AI assistant method

to be less helpful.

These findings indicate that the AI assistant method gen-

erally provided a positive learning experience or offered in-

sights that users could apply to other task completion meth-

ods. The high percentage of users finding it more helpful

suggests that the AI assistant may be effective in training or

familiarizing users with tasks, improving their performance

even when the AI is not directly guiding them, claim that

is substantiated in the quantitative analysis for skill acquisi-

tion.

Question Score Logit (5) ↑ Score Percentage ↑
Clarity 3.42 68.33%

Proactivity 3.17 63.33%

Ease of use 3.08 61.67%

Satisfaction 3.00 60.00%

Relevance 2.67 53.33%

Overall 3.07 61.33%

Table 2. User Interaction Quality Metrics.

The user interaction quality metrics presented in Table

2 provide insights into various aspects of the AI assistant’s

performance as perceived by users. The metrics cover clar-

ity, proactivity, ease of use, satisfaction, and relevance, each

rated on a 5-point scale. The results indicate that the AI as-

sistant performed best in providing clear instructions, with

a score of 3.42 out of 5 (68.33%). Proactivity in guiding

users through tasks was also well-received, scoring 3.17

(63.33%). The ease of use and overall satisfaction were

rated slightly above average, both scoring around 3 out of

5 (61.67% and 60.00% respectively). The relevance of the

AI’s responses to user queries received the lowest score of

2.67 (53.33%), suggesting an area for potential improve-

ment. The overall performance, calculated as the mean

score across all questions, was 3.07 (61.33%), indicating

that while the AI assistant generally met user expectations,

there is room for enhancement.

Cost. Our AI task guidance system balances cost and

performance efficiently, operating on a Lenovo ThinkPad

P16 Gen 2 with an NVIDIA RTX 5000 GPU and a Mi-

crosoft HoloLens 2, totaling $9,019. Each task session

incurs an average inference cost of $0.002 using Ope-
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Figure 5. (a): Zero-shot scene classification and dense captioning. (b): Accuracy report for perception methods.

nAI’s ChatGPT [17], achieving a inference cost-to-success

rate ratio [8] of 0.000029 $/%, demonstrating strong cost-

effectiveness in AI-assisted task completion.

6.3. Perception

To fully understand an AI agent’s potential in task guidance,

it is crucial to evaluate its perception abilities separately.

This isolation allows us to independently assess how well

it can interpret and respond to visual inputs from the envi-

ronment, a critical factor in real-time guidance. To that end,

we integrated two methods in our system, one adopting a

zero-shot approach, and the other a supervised.

6.3.1. Scene Description (Sce)

This method enhances situational awareness by generating a

free-text scene description using a combination of an object

detector, a captioning module, and a Large Language Model

(LLM).

As we can see in Figure 5 (a), we apply an object de-

tector, here we use DINO [11], to identify regions of in-

terest (ROI) in the latest captured frame. These ROI are

then fed into a captioner, we experiment with BLIP-2 [12]

and LaViLa [28], along with prompts to generate descrip-

tions for each region. LaViLa which, unlike BLIP-2, takes

a sequence of frames as input, allowing it to better capture

temporal dynamics of the task completion.

The resulting descriptions from either captioner, along

with their corresponding region coordinates, are provided

as a prompt to a Large Language Model (LLM) (GPT-3.5-

turbo), together with a full list of the task steps. The LLM

then maps the individual descriptions to a holistic scene

state recognition acting as a task step classifier but also pro-

viding a comprehensive scene description with positional

information.

This zero-shot approach allows the system to generalize

to diverse or unfamiliar environments where task-specific

data may not be available. The classification accuracy from

this approach is limited by the constraints imposed by the

different components in the pipeline. For instance, the ob-

ject detection and captioning stages, while effective at gen-

erating rich and detailed scene descriptions, introduce noise

and variability that can affect the LLM’s ability to accu-

rately classify task steps.

6.3.2. ResNet Step Classifier (Cls)

To track task progress more accurately, we implement a

ResNet-based step classifier. Although it requires task-

specific training data, it is particularly suited for sce-

narios where computational resources are limited, such

as in remote environments, making it valuable for task-

guidance applications in specialized domains like battlefield

medicine.

As expected, Cls outperforms Sce across tasks, owing to

its task-specific training and the in-distribution test environ-

ment data(Figure 5 (b)). However, Sce accurately detects

salient regions (not quantitatively evaluated here), which

could prove highly valuable in future iterations of our sys-

tem. Additionally, fine-tuning the captioner is likely to yield

significant performance improvements, which we plan to

explore in future work.

7. Conclusion

For human-AI collaborative task completion, we introduced

a comprehensive evaluation framework and developed an

AR-equipped AI agent for interactive guidance. Our human

studies validate the framework’s effectiveness, providing

valuable insights into AI-assisted collaboration from both

a technical design and human learning perspective across

diverse task scenarios. First, the results demonstrate that

our AI agent significantly improves task success and re-

duces errors. Additionally, our studies offer deeper in-

sights into human skill development in AI-assisted settings,

revealing how AI guidance shapes learning curves, task

adaptation, and user confidence. These findings underscore

AI’s potential not only for improving task performance but

also for facilitating structured skill acquisition. Further-

more, we contribute to the research community by sharing

anonymized multimodal data from our human study, along

with expert-labeled task assessments, enabling further anal-

ysis and benchmarking. Based on our findings, future work

can explore intuitive human query interfaces, advanced per-

ception models, and proactive intervention strategies to en-

hance adaptability and user experience in human-AI collab-

oration for task completion.
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