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Figure 1. Composite Reflections demonstrating thematically coherent mosaic generation. (A) Pablo Picasso’s self-portrait reconstructed
using 485 constituent works by the artist himself, creating an intimate artistic dialogue. (B) Pierre-Auguste Renoir’s Bal du moulin de la
Galette recreated from 1,910 Impressionist artworks, preserving the movement’s stylistic coherence. (C) Van Gogh’s Apples reconstructed
using 306 apple-themed artworks, maintaining both visual and semantic consistency between the subject matter and constituent pieces.

Abstract

We introduce Composite Reflections, a novel approach to
mosaic creation where composite artworks maintain in-
timate thematic and visual relationships with their con-
stituent pieces. Unlike traditional mosaics that use source
images as decorative elements, our method ensures mean-
ingful dialogue between individual artworks and their col-
lective representation. We present an end-to-end pipeline
employing color-based retrieval and structural similarity
analysis to reconstruct target artworks using semantically
coherent constituent collections. Our approach transcends
conventional tile-based methods by preserving both the
artistic integrity of individual components and the narrative
coherence of the overall composition. This work opens new
avenues for computational creativity, enabling artists to ex-
plore expressive relationships within their image collections
through algorithmically-guided mosaic generation.
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1. Introduction

Mosaic art represents a profound intersection of individual
expression and collective narrative, where artists assemble
disparate elements into cohesive visual statements. From
the ancient tessellated floors of Pompeii to Salvador Dali’s
groundbreaking 1976 photomosaic of Abraham Lincoln,
this medium has evolved to challenge traditional boundaries
between composition and decomposition, unity and frag-
mentation. Contemporary artists like Charis Tsevis have el-
evated photomosaics beyond mere technical exercises, cre-
ating works where constituent images maintain thematic
coherence with their composite whole—transforming the
medium from algorithmic puzzle-solving into meaningful
artistic discourse.

In computer vision, photomosaic generation has been ex-
tensively studied as an optimization problem focused pri-
marily on visual fidelity [6, 11]. Existing approaches typi-
cally segment input images and replace each region with the
most visually similar candidate from a pre-defined dataset,



emphasizing computational efficiency and pixel-level accu-
racy. However, these methods often sacrifice artistic in-
tegrity by arbitrarily stretching, cropping, or decontextu-
alizing constituent images, reducing the mosaic to a mere
technical demonstration rather than a coherent artistic state-
ment. Furthermore, they neglect the semantic relationships
between the target image and constituent elements, miss-
ing the conceptual depth that distinguishes artistic mosaics
from algorithmic reconstructions.

We introduce Composite Reflection, a novel approach
that prioritizes thematic coherence alongside visual fidelity
in photomosaic generation. Our method leverages Large
Vision-Language Models (LVLMs) to curate semantically
relevant image collections based on extracted themes from
the target artwork. Rather than relying on arbitrary image
databases, we construct purpose-built datasets that maintain
conceptual dialogue with the input image’s subject matter,
artistic style, or cultural context.

Our approach operates through a multi-stage pipeline
that balances artistic intent with technical precision. First,
we employ LVLMs to analyze the input artwork and cu-
rate a thematically coherent dataset of constituent images.
Second, we perform adaptive image segmentation that re-
spects both compositional structure and semantic bound-
aries. Finally, we match segments to constituent images us-
ing a dual-criteria framework that weighs color histogram
similarity against structural coherence measured through
the Structural Similarity Index (SSIM), ensuring both per-
ceptual accuracy and preservation of individual artwork in-
tegrity.

The key contributions of this work are:

1. Thematic coherence framework: We establish a
methodology for creating semantically meaningful pho-
tomosaics where constituent images maintain conceptual
relationships with the target artwork, moving beyond
purely visual similarity metrics.

LVLM-driven dataset curation: We demonstrate how
Large Vision-Language Models can be effectively em-
ployed to automatically generate thematically relevant
image collections, eliminating the need for manual
dataset preparation.

3. Dual-criteria matching with integrity preservation:
We propose a novel matching algorithm that optimizes
both color fidelity and structural similarity while pre-
serving the aspect ratios and compositional integrity of
constituent artworks, avoiding common distortions in
existing tile-based approaches.

End-to-end automated pipeline: We present a com-
plete system that transforms artistic concepts into exe-
cutable processes, requiring only an input artwork, tar-
get theme, and source collection to generate contextually
rich photomosaics.

Through extensive evaluation on diverse artistic inputs
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and comparison with state-of-the-art methods, we demon-
strate that Composite Reflection produces photomosaics
that achieve superior thematic coherence while maintain-
ing competitive visual quality, opening new possibilities for
computationally-assisted artistic creation.

2. Related Work

The concept of photomosaics has its roots in traditional art,
with Salvador Dali pioneering photo mosaics in the 1970s.
Contemporary digital artists like Charis Tsevis continue this
tradition, creating compelling mosaic artworks through so-
phisticated manipulation of constituent image collections.
However, computational approaches to mosaic generation
remain relatively underexplored in computer vision, despite
drawing from well-established techniques in image retrieval
and segmentation. Our work builds upon foundations in
color-based and structure-based image retrieval to create se-
mantically coherent digital mosaics.

2.1. Image Retrieval

Content-based image retrieval forms the backbone of com-
putational mosaic generation. Early approaches focused
primarily on color-based retrieval using features such as
color histograms [19], color moments [14], and color tex-
tures [7]. While these methods effectively capture color
distribution, they lack structural information crucial for cre-
ating visually coherent mosaics. We adopt color histograms
as our primary retrieval mechanism due to their effective-
ness in preserving color fidelity—a critical requirement for
maintaining visual consistency across mosaic segments.

More sophisticated approaches combine color and struc-
tural information for improved retrieval accuracy. Recent
work [25] employs cumulative histograms for color similar-
ity and Hu invariant moments for shape similarity, enabling
retrieval based on both chromatic and geometric properties.
Similarly, Kumar et al. [10] integrate edge-histogram fea-
tures for shape, Tamura texture features [20] for texture,
and quantized color histograms for comprehensive content-
based retrieval.

Our approach extends these methods by incorporating
Structural Similarity Index Measure (SSIM) as a secondary
filtering criterion. SSIM’s focus on luminance, contrast, and
structural coherence makes it particularly suitable for mo-
saic applications, where preserving subtle details like shad-
ows and shading is essential for maintaining the visual in-
tegrity of the reconstructed image.

Structure-based retrieval methods, while less directly ap-
plicable to our work, provide relevant insights into shape
matching. Sketch-based retrieval approaches [16] utilize
learned key shapes and contour detection for structure
matching, while recent deep learning methods [17] lever-
age CLIP [15] with data augmentation to learn fine-grained
shape representations.
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Figure 2. Overall architecture of the Composite Reflections pipeline. The curated artwork collection is extracted from a larger artwork
collection and the artworks are encoded into color histograms. The input is segmented into smaller segments which are then encoded into
color histograms. For each segment, the segment color histogram is matched with the curated collection histograms using cosine similarity
to obtain the first set of k candidate artworks based on color similarity. The segment and the candidate artworks are then converted into
grayscale to calculate structural similarity between the segment and the artworks using SSIM. The artwork with the highest SSIM score
is used to replace the segment while applying color-appropriate bordering to preserve its aspect ratio. This process is repeated for each
segment until the final Composite Reflection is obtained.

2.2. Digital Mosaics positioning our contribution at the intersection of computa-

. . . tional creativity and content-based image analysis.
Computational mosaic generation has evolved from man-

ual, user-guided approaches to fully automated systems.

Early work by Hausner [8] required user-defined edges for 3. Composite Reflection Pipeline

creating tiled mosaics from input artworks. Di Blasi and Our Composite Reflection framework generates themati-
Gallo [5] advanced this by introducing automatic segmen- cally coherent photomosaics through a five-stage pipeline
tation using statistical region merging [13]. In contrast, our that preserves both visual fidelity and semantic meaning.
approach employs fixed-size segmentation to preserve the Given an input artwork and a target theme, our method au-
aspect ratio and orientation of constituent artworks, main- tomatically curates a relevant dataset, processes constituent
taining their artistic integrity within the composite. images to maintain aspect ratio integrity, segments the in-
Photo mosaic generation has been extensively studied, put image, and performs dual-criteria matching to construct
with Blasi et al. [6] proposing automatic segmentation into the final mosaic. Figure 2 illustrates the complete pipeline
equal-sized regions and replacement based on average RGB architecture.
values. Subsequent work [11] incorporated color correc-
tion to improve visual coherence. However, we deliberately 3.1. Thematic Dataset Curation
avoid color correction to preserve the authentic appearance The foundation of Composite Reflection photomosaics lies
of constituent artworks, instead relying on improved re- in establishing semantic coherence between the target art-
trieval mechanisms for coherence. work and constituent images. We support two primary the-
Our approach differs fundamentally from existing meth- matic categories: artistic themes (art movements, specific
ods by utilizing color histograms rather than simple RGB artists, stylistic periods) and semantic themes (objects, enti-
averages, providing richer color distribution information for ties, conceptual motifs). Our curation process adapts to the
more accurate matching. The integration of SSIM for struc- availability of metadata within existing artwork collections.
tural similarity further distinguishes our work from purely For collections with comprehensive metadata (e.g., cu-
color-based approaches. While some recent methods [24] rated museum databases), we directly filter artworks based
employ edge-aware algorithms for large segment process- on predefined categorical labels. However, many large-
ing, direct comparison is limited by code availability con- scale collections lack detailed thematic annotations. To
straints. address this limitation, we employ Large Vision-Language
The concept of Composite Reflections extends beyond Models (LVLMs) for automated content analysis and anno-
traditional mosaic generation by emphasizing the thematic tation.
relationship between constituent and composite artworks, Specifically, we utilize InternVL2 [2] to generate the-
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matic annotations for the WikiArt collection. For each art-
work, we query the LVLM with targeted prompts such as
“Describe the food items present in this artwork” or “Iden-
tify the artistic movement and style of this painting.” The
resulting annotations enable fine-grained thematic filter-
ing—for instance, extracting all artworks containing “ap-
ple” references to construct an apple-themed dataset.

This automated curation approach ensures that con-
stituent images maintain conceptual relationships with the
target artwork while scaling to large collections without
manual intervention.

3.2. Constituent Image Processing

To preserve artistic integrity while enabling flexible mosaic
composition, we apply two preprocessing steps to each con-
stituent artwork in our curated dataset.

3.2.1. Aspect Ratio Preservation via Adaptive Bordering

Traditional mosaic algorithms often distort constituent im-
ages through stretching or cropping to fit predetermined
segment dimensions. To maintain the original aspect ratios,
we transform each artwork into a designated aspect ratio
format (e.g., a square format) by adding contextually ap-
propriate color borders.

Border colors are determined by extracting the dominant
color from each artwork histogram. This approach ensures
that added borders blend harmoniously with the original
artwork rather than introducing jarring visual discontinu-
ities. The bordered artworks can then be uniformly scaled
to match segment dimensions without geometric distortion.

3.2.2. Color Distribution Encoding

We pre-compute color histograms for all constituent art-
works to enable efficient retrieval during mosaic generation.
Unlike average color representations, which reduce com-
plex color relationships to single values, histograms capture
the full distributional characteristics of an artwork’s color
palette.

Our implementation uses OpenCV’s calcHist func-
tion with 32 bins per channel in RGB space, creating
32,768-dimensional feature vectors that encode color fre-
quency distributions. These histograms are indexed using
FAISS [9] for rapid similarity search during the matching
phase. The choice of 32 bins balances discriminative power
with computational efficiency - fewer bins lose important
color distinctions, while more bins introduce noise from
quantization artifacts.

3.3. Input Image Segmentation

We segment the input artwork into a regular grid of equally-
sized rectangular regions. While adaptive segmentation
based on semantic boundaries could potentially improve re-
sults, we find that uniform segmentation provides several
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advantages: computational simplicity, predictable output
resolution, and consistent constituent image scaling.

For each segment, we extract the same 32-bin RGB color
histogram used for constituent image encoding. This cre-
ates a direct basis for similarity comparison in the subse-
quent matching phase.

3.4. Dual-Criteria Segment Matching

Our matching algorithm balances color fidelity with struc-
tural coherence through a two-stage retrieval process that
progressively narrows the candidate pool based on comple-
mentary similarity metrics.

3.4.1. Color-Based Candidate Retrieval

For each image segment, we retrieve the top-k most simi-
lar constituent artworks based on cosine similarity between
their color histograms. Cosine similarity is particularly suit-
able for histogram comparison as it is invariant to scaling
differences and focuses on distributional shape rather than
absolute magnitude.

The choice of k candidates represents a carefully tuned
balance. Fewer candidates overly constrain structural
matching options, while more candidates introduce colori-
metrically poor matches that compromise visual coherence.

3.4.2. Structure-Aware Final Selection

Among the top-k color-matched candidates, we select the
final replacement based on structural similarity using the
Structural Similarity Index Measure (SSIM) [21]. Both
the image segment and candidate artworks are converted to
grayscale to isolate structural information from color char-
acteristics.

SSIM quantifies perceptual similarity by comparing lu-
minance (u), contrast (0), and structural correlation (o ,)
between images:

(2p1tty + C1) (204, + C)
(2 + 12+ C1)(0% + o2 + Ch)

SSIM(z,y) = (D

where C7 and Cy are stabilization constants. Values
range from -1 (perfect dissimilarity) to 1 (perfect similar-
ity).

The artwork achieving the highest SSIM score replaces
the corresponding segment. This dual-criteria approach en-
sures that final selections satisfy both color harmony and
structural compatibility requirements.

3.5. Mosaic Assembly

After processing all segments, we assemble the final Com-
posite Reflection by replacing each original segment with
its matched constituent artwork. The resulting mosaic
maintains visual coherence through color matching while



preserving structural relationships through SSIM-based se-
lection, creating artworks that function both as faithful re-
productions at a distance and as thematically meaningful
collections when viewed closely.

The complete pipeline operates automatically given only
an input artwork, target theme, and source collection, en-
abling scalable generation of contextually rich photomo-
saics with minimal manual intervention.

4. Experimental Setup and Evaluation

We evaluate Composite Reflection across diverse thematic
contexts to demonstrate its versatility and effectiveness in
generating semantically coherent photomosaics. Our exper-
imental framework encompasses three distinct thematic cat-
egories, comprehensive evaluation metrics, and systematic
analysis of key design choices.

4.1. Dataset Construction and Thematic Categories

We construct nine specialized datasets spanning three the-
matic categories to evaluate our method’s ability to maintain
semantic coherence across different artistic and conceptual
domains.

4.1.1. Artist-Specific Collections

Artist-based datasets enable evaluation of stylistic coher-
ence within individual artistic oeuvres. We curate collec-
tions for five influential artists representing diverse artistic
movements and techniques:

¢ Vincent van Gogh: 1,749 artworks from WikiArt [22],
spanning his complete career from early works to his dis-
tinctive post-impressionist masterpieces.

¢ Jan Brueghel the Elder: 1,587 artworks from the spe-
cialized Brueghel dataset [18], focusing on his detailed
landscape and genre paintings.

 Pablo Picasso: 743 artworks from WikiArt covering his
blue period through cubist innovations.

¢ Edvard Munch: 5,461 artworks from the MUNCH mu-
seum foto-web archive [12], providing comprehensive
coverage of his expressionist works.

* Salvador Dali: 600 artworks from WikiArt representing
his surrealist period and technical precision.

For artist-specific evaluations, we use self-portraits or
portraits of each artist as input images, testing our method’s
ability to recreate iconic representations using the artist’s
own stylistic vocabulary.

4.1.2. Art Movement Collections

Movement-based datasets evaluate our method’s capacity to
maintain historical and stylistic coherence within broader
artistic contexts:

e Impressionism: 13,059 artworks capturing the move-
ment’s emphasis on light, color, and atmospheric effects.
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* Post-Impressionism: 5,669 artworks representing the di-
verse reactions to Impressionism’s limitations.

* Early Renaissance: 1,391 artworks showcasing the pe-
riod’s technical innovations and humanistic themes.
Input images for movement-based experiments are se-

lected from representative works within each movement,

ensuring thematic consistency between target and con-

stituent images.

4.1.3. Semantic Theme Collections

Object-based datasets demonstrate our method’s effective-

ness in conceptual coherence beyond purely artistic cate-

gories. Using InternVL2 [2], we automatically annotate
the complete WikiArt collection (79,469 artworks) with de-
tailed content descriptions.

» Apple-themed collection: 2,000 artworks containing ap-
ple motifs, selected from automated annotations using the
keyword “apple.” We limit the collection size to 2,000 as
manual verification reveals diminishing annotation qual-
ity beyond this threshold.

This approach demonstrates the scalability of our au-
tomated curation process and the potential for creating
highly specific thematic collections from large, unstruc-
tured datasets.

4.2. Evaluation Metrics

We employ complementary evaluation metrics to assess
both technical fidelity and perceptual quality of generated
mosaics.

4.2.1. Structural Fidelity Assessment

We measure structural preservation using the Structural
Similarity Index Measure (SSIM) [21] applied to grayscale
versions of input and output images. This approach iso-
lates geometric and textural similarity from color informa-
tion, providing a pure assessment of structural preservation.

SSIM values range from -1 (complete dissimilarity) to
+1 (perfect similarity), with higher values indicating bet-
ter preservation of the original image’s structural charac-
teristics. By converting to grayscale, we ensure that struc-
tural assessment is not confounded by color matching per-
formance.

4.2.2. Perceptual Quality Evaluation

We assess perceptual similarity using Learned Perceptual
Image Patch Similarity (LPIPS) [26], which leverages deep
neural network features trained on large-scale image classi-
fication tasks. LPIPS has been shown to correlate strongly
with human perceptual judgments, making it an ideal metric
for evaluating the subjective quality of our reconstructions.

Lower LPIPS scores indicate higher perceptual similar-
ity, reflecting our method’s ability to create visually com-
pelling mosaics that maintain the essential visual character-
istics of the original artwork.
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Figure 3. Qualitative comparison of Composite Reflections for Van Gogh’s self-portrait using different matching criteria: average color,
color histogram, and color histogram + SSIM. Results shown for 320x260 pixel segments.

4.3. Ablation Studies are available at [3] and Section 4 in the Supplementary. A

We conduct comprehensive ablation studies to validate our video showcase can be found at [4].

key design choices and demonstrate the contribution of each 5.1. Comparative Analysis

ipeline component. . . .
PP P Figure 3 compares our approach with color histogram-

4.3.1. Color vs. Structure Matching based and color average-based mosaic approaches [1]. The
We compare our dual-criteria approach against single- color average-based mosaic fails to retrieve appropriate art-
criterion baselines: color-only matching using histogram works for individual segments, as single average values can-
similarity, and structure-only matching using SSIM. Results not capture the complete chromatic complexity of image re-
consistently show that our combined approach achieves su- gions. This fundamental limitation results in retrieved art-
perior performance on both structural and perceptual met- works that poorly match the overall color characteristics of
rics, validating the importance of balancing these comple- their corresponding segments.

mentary aspects. The color histogram-based approach achieves better

color correspondence but lacks structural coherence. While

4.3.2. Candidate Pool Size Analysis retrieved artworks exhibit appropriate color distributions,

We systematically vary the number of color-based candi- the absence of structural similarity creates mosaics that fail
dates (k =1, 5, 10, 20, 50) used for structural matching. Our to preserve essential visual features such as shadows and
analysis reveals that for our maximum segment granularity depth information. This structural deficiency causes the fi-
k =10 provides the optimal balance: smaller values overly nal composition to lose critical definitional elements of the
constrain structural options, while larger values introduce original subject matter.

colorimetrically inappropriate matches that degrade overall Our SSIM-enhanced approach demonstrates significant
quality. improvement by incorporating structural similarity along-
4.3.3. Thematic Coherence Impact side color matching. The structural correspondence be-

tween segments and retrieved artworks enables preservation
of fine details including shadows, depth gradients, and ge-
ometric features. This alignment allows retrieved compo-
nents to collectively maintain the complete visual definition
present in the input artwork.

We compare mosaics generated using our curated thematic
datasets against those created with random image collec-
tions of equivalent size. Results demonstrate significant im-
provements in both quantitative metrics and qualitative as-
sessment when using thematically coherent constituent col-
lections, supporting our central hypothesis about the impor- 5.2. Structural Impact Analysis

tance of semantic relationships in artistic mosaic creation. . S
The importance of structural similarity is further demon-

5. Results strated in Figure 4 and Table 2, where we vary the number

of color retrievals used for structural filtering to modulate
In this section, we showcase and discuss the results obtained SSIM impact. As we increase the pool of color-based can-
through our Composite Reflection architecture. Composite didates for structural selection, both qualitative and quan-
Reflection samples created using different themed datasets titative improvements emerge in the resulting Composite
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Segment Size | 5 o 20x20  100x100
Theme
Artist
Van Gogh 0.2256  0.1509  0.1376
Picasso 0.2038 0.09479  0.0699
Munch 0.4698 0.3014  0.2555
Dali 0.3023  0.2491 0.2054
Brueghel 04231 0.2784 0.216
Art Movement
Impressionism 0.3561  0.1809 0.154
Post Impressionism | 0.2437 0.14083  0.1411
Early Renaissance | 0.3194  0.1825 0.1965
WikiArt Dataset 0.2897 0.1659  0.1592
Thematic
Apple 0.2837 0213 0.2492

Segment Size | so5 20520 100x100
Theme
Artist
Van Gogh 0.3238 0.3769  0.4546
Picasso 0.2667 0.3005  0.4258
Munch 0.3018 0.3384  0.4406
Dali 0.2603 0.2801  0.3964
Brueghel 0.3664 0.3983  0.4957
Art Movement
Impressionism 0.2093 0.3233  0.3773
Post Impressionism | 0.2161 0.3258  0.3861
Early Renaissance | 0.2516 0.2933  0.3566
WikiArt Dataset 0.1917 0.3307  0.3992
Thematic
Apple 0.1756  0.3301  0.3755

Table 1. Quantitative evaluation using SSIM (left) and LPIPS (right) metrics comparing our Composite Reflections with original input
images across different segmentation granularities. Higher SSIM scores (1) indicate better structural similarity, while lower LPIPS scores
(J) indicate better perceptual similarity between the original and generated mosaic. Segment sizes are specified in pixels (height, width).
SSIM is calculated between the complete input image and the Composite Reflection output.

Reflections. This progressive enhancement confirms that
structural similarity is crucial for maintaining visual coher-
ence, particularly when dealing with larger segment sizes.

Our analysis reveals that constituent artworks success-
fully highlight different features through coherent pattern
formation that emphasizes specific characteristics of the tar-
get artwork. Notably, well-defined Composite Reflections
emerge even with limited artwork collections, demonstrat-
ing the robustness of our approach.

5.3. Quantitative Validation

Table | presents comprehensive SSIM and LPIPS metrics
comparing input artworks with their reconstructions across
different granularities. These quantitative results validate
our approach’s effectiveness in both structural preservation
and perceptual similarity. The metrics demonstrate that our
reconstructions maintain geometric fidelity while preserv-
ing human-perceived visual similarity to the original art-
works, confirming the success of our dual color-structure
retrieval strategy.

5.4. Limitations

Our approach has a few limitations: 1. Segmentation con-
straints: The current implementation is restricted to rectan-
gular, fixed-size uniform segments. However, we feel that
the framework could be easily extended to support vari-
able segment sizes or adaptive segmentation based on im-
age content. 2. Dataset size dependency: The quality of
Composite Reflections is directly constrained by the diver-
sity and size of the constituent artwork collection. When
working with highly curated thematic datasets, limited color
gamut coverage can compromise faithful reconstruction of
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target images with diverse chromatic ranges.

6. Conclusion

We present a novel concept of Composite Reflections, in-
troducing a computational framework that bridges tradi-
tional mosaic art with contemporary digital image process-
ing. Our end-to-end pipeline enables artists and designers
to transform arbitrary image collections into deeply reflec-
tive visual narratives that maintain both individual artistic
integrity and collective coherence. The key contributions of
this work include: (1) the theoretical foundation of Com-
posite Reflections as a new paradigm for image compo-
sition, (2) a robust algorithmic pipeline that preserves se-
mantic relationships while optimizing visual coherence, and
(3) a flexible framework that accommodates diverse artistic
styles and image collections. Through extensive evaluation,
we demonstrate that our approach generates mosaics that
exhibit significantly stronger thematic coherence and visual
appeal compared to traditional tile-based methods.

Our system empowers artists to explore new forms of
creative expression by revealing hidden connections within
their image collections, fostering a vibrant and expressive
dialogue between individual art pieces and the overarching
composition. The resulting works transcend simple image
aggregation, creating meaningful visual stories that reflect
both the essence of constituent elements and emergent col-
lective properties. Future work will explore real-time inter-
active applications, integration with machine learning mod-
els for automated curation, and extension to video and tem-
poral media. We believe Composite Reflections opens new
avenues for computational creativity and digital art explo-
ration.



Top 5 Top 10 Top 25
Number of Metric Color Retrievals Color Retrievals Color Retrievals Edge Aware
Segments (Color Histogram (Color Histogram (Color Histogram Retrieval [23]
+ SSIM) + SSIM) + SSIM)

12x10 SSIM (1) 0.0974 0.106 0.1179 0.1139
LPIPS (}) 0.2711 0.2686 0.2649 0.3284

48x40 SSIM (1) 0.1123 0.1182 0.1219 0.1289
LPIPS (}) 0.2553 0.2505 0.2487 0.2532

144x120 SSIM (1) 0.1231 0.1355 0.1552 0.1623
LPIPS (}) 0.2323 0.2316 0.2365 0.2481

Table 2. Quantitative results for varying the number of color retrievals utilized for structural retrieval. Emphasizing structure for lower
granularity provides better results whereas reducing the emphasis on structure for lower granularities provides better results. SSIM is
calculated between the input and the complete Composite Reflection output.

12x10
Segments

48x40
Segments

144x120
Segments

Top 5 (Ours) Top 10 (Ours) Top 25 (Ours) Edge Aware Mosaic [23]
(Color Histogram + SSIM) (Color Histogram + SSIM) (Color Histogram + SSIM)

Figure 4. Composite Reflections of Self-portrait of Picasso with varying numbers of color histogram-based retrievals and segmentation
granularity. The figure showcases qualitative comparisons between Ours and Edge Aware mosaic approaches, where segmentation granu-
larity varies vertically and the number of color-based retrievals varies horizontally.
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