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Supplementary Material

A. Experiments on Mutli-View 3D Detector

A.1. 3D Object Detector Comparisons

We conducted experiments on different settings for our
3D object detector in Tab. 7. We considered both BEV-
Former [18] and BEVFormer v2 [37] with ResNet-50,
ResNet-101, and V2-99 backbones. The maximum number
of cameras for training is reported for each experiment due
to the limitation of H100 GPU memory. All experiments
were trained for 24 epochs with a learning rate of 2× 10−4.

Method Backbone Max # of
Cameras

mAP

BEVFormer [18] ResNet-50 16 83.14
BEVFormer [18] ResNet-101 15 88.64
BEVFormer v2 [37] ResNet-50 15 82.78
BEVFormer v2 [37] ResNet-101 15 85.03
BEVFormer v2 [37] V2-99 14 79.95

Table 7. 3D object detection results with different detectors on a
customized AICity’24 validation set.

Compared with BEVFormer, BEVFormer v2 receives
relatively lower mAP by adding the perspective supervision.
Therefore, the perspective supervision may not be helpful
for our MTMC application for model convergence. As for
the V2-99 backbone, we need to decrease the number of
camera views during the training to fit our GPU memory
of around 80 GB. This will downgrade the detection per-
formance significantly. In the future, we will improve the
memory efficiency to make it possible to utilize larger im-
age backbones.

A.2. Scene Re-Centering for BEVFormer

The definition of the BEV coordinate system is important
for BEVFormer training. In the original autonomous driv-
ing settings, the origin is located on the ego-vehicle, which
is the center of the area to be perceived. In our MTMC set-
tings, we define the origins of the multi-camera scenes as
the centers of the floor plans and transform the annotations
and calibration matrices to the newly defined BEV coordi-
nates. We call this step “re-centering”.

In Tab. 8, we evaluate the model performance on the
WildTrack dataset before and after this re-centering step.
Before the re-centering, the origin was defined at the cor-
ner of a scene. We notice that re-centering can dramatically
improve the detection performance by +22.33 mAP, espe-
cially for those objects farther from the origin.

Method mAP

Baseline 66.03
+ re-centering 88.36
+ pre-training 92.03

Table 8. A comparison of detection results on the WildTrack
dataset with re-centering and pre-training.

A.3. Pre-Training on AICity’24 Dataset

Since WildTrack is a small dataset with only 400 frames in
total, we considered training BEVFormer with a pre-trained
model on the AICity’24 dataset, which is a much larger
dataset with various scenes. As shown in Tab. 8, this pre-
training leads to +3.67 detection performance improvement
on the WildTrack test set. This also illustrates the important
role of large and well-annotated synthetic datasets in boost-
ing the performance on limited real data.

B. Detection Association Algorithm

B.1. Algorithm Details

Algorithm 1: 2D-3D detection association
Input : 2D detection set Dv from camera v; 3D

detection set E from BEVFormer with all
camera views; projection matrix Pv of
camera v.

Output: Mapping of indices from E to Dv .
1 E ← filter E by confidence score;
2 E ← CircleNMS(E , δ);

// optional, δ: NMS threshold

3 Ev ← Pv(E); // projected 3D boxes

4 for camera v to V do
5 Initialize the cost matrix cv = [cvij ] as zeros;
6 for b3D

i from Ev do
7 for b2D

j from Dv do
8 cvij ← compute cost by Eq. (4);
9 end

10 end
11 Matches mv ← Hungarian(cv,∆);

// ∆: cost threshold

12 end

The detailed 2D-3D detection association algorithm is
shown in Algorithm 1. We set the threshold for CircleNMS
to δ = 0.2m and set the cost threshold to ∆ = 150.



Figure 7. Visualization of 2D-3D detection association results.

B.2. Visualization
We visualized some 2D-3D detection association results on
sample frames of the AICity’24 and WildTrack datasets
in Fig. 7. The associated bounding boxes are in the same
color, where the smaller ones are 2D detections and the
larger ones are projected 3D detections from BEVFormer.
Those 2D detections in white are not associated with any
3D detections.

B.3. Improvements with Detection Association
We compared the tracking performance of MCBLT with
and without the proposed 2D-3D detection association algo-
rithm in Tab. 9. The baseline result is based on the ReID fea-
tures extracted from the large projected 3D bounding boxes
shown in Fig. 3. With the noisy background or other ob-
jects included in the image crops, ReID feature quality will
be significantly affected.

Method IDF1 MOTA MOTP MT ML

Baseline 63.2 73.4 93.7 24.0 4.0
+ det association 93.4 87.5 94.3 90.2 2.4

Table 9. A comparison of results on the WildTrack test set with
our 2D-3D detection association algorithm.

C. ReID Feature Quality Analysis
We conducted ReID feature quality analysis on both the
AICity’24 and WildTrack datasets. For the AICity’24

dataset, we sampled 500 characters with their 2D bounding
boxes and object IDs from the ground truth across all scenes
and cameras from the test set. The total object image crop
count is 40,000. We filtered out 2D bounding boxes that are
smaller than 5,000 pixels, as well as those whose aspect ra-
tio (i.e., width / height) is less than 0.15. Similarly, for the
Wildtrack dataset, we sampled 330 characters from the se-
quence and applied the same filters bringing the total object
crop count to 41,284.

Dataset Rank-1 Rank-5 Rank-10 mAP

AICity’24 95.02 97.44 98.08 73.85
WildTrack 77.18 84.49 87.97 63.11

Table 10. Evaluation on our ReID feature quality.

We evaluated the ReID feature quality by the mean av-
erage precision (mAP), rank-1, rank-5, and rank-10 accura-
cies. The evaluation results are shown in Tab. 10. We found
that the feature quality on the WildTrack dataset is worse
than that on the AICity’24 dataset. This is because i) Wild-
Track is a real-world dataset with more noises and diverse
illuminations from different camera views; ii) 2D bounding
box annotations are not as accurate as the synthetic AIC-
ity’24 dataset. Nevertheless, our MCBLT achieved impres-
sive results on WildTrack based on these ReID features.



D. Model Time Complexity Analysis
Although MTMC detection and tracking tasks do not usu-
ally require real-time performance and are tolerant to time
delays, we record the running time of the proposed MCBLT
pipeline in Tab. 11 to provide a rough impression of the
complexity of the model. The model inference is conducted
on one single NVIDIA A100 GPU, with 10 cameras in the
scene. Our method achieves around 1.5 FPS end-to-end
before any further model optimization. The 2D detection,
ReID, and tracking models are very efficient and can oper-
ate in parallel with BEVFormer so that their running time is
negligible.

Detection Tracking
BEVFORMER 1.6 FPS SUSHI

452.7 FPSDINO 65.0 FPS SOLIDER 58.9 FPS

Table 11. MCBLT model efficiency analysis.

E. Overall Visualization
We also visualized MTMC detection and tracking results of
MCBLT on the AICity’24 and WildTrack datasets. Please
find the demos in the attachment.
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